بهینه‌یابی تولید نانوژل کیتوزان- اسیدکافئیک حاوی اسانس آویشن شیرازی و نایسین و بررسی اثر نانوژل بهینه بر کیفیت پنیر سفید ایرانی

نویسندگان
1 گروه کشاورزی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
2 دانشگاه آزاد سبزوار
3 دانشگاه آزاد رودهن
چکیده
این مطالعه با هدف بهینهیابی فرمولاسیون نانوژل کیتوزان- کافئیک اسید حاوی اسانس آویشن‌شیرازی (ZEO) و نایسین انجام شد. متغیرهای مستقل (غلظت نانوژل کیتوزان-اسیدکافئیک، آویشن شیرازی و نایسین) بر اساس بالاترین پتانسیل زتا و کارایی درون‌پوشانی، در کنار کمترین اندازه ذرات و مقادیرIC50(DPPH) (بیش‌ترین قدرت مهار رادیکال آزاد DPPH) بهینه شدند. فرمولاسیون نانوژل بهینه مطابق نتایج طرح آزمایشی باکس-بنکن و مدل سطح پاسخ گام‌به‌گام عبارت است از: غلظت کیتوزان: 0٫4 گرم؛ غلظت اسانس آویشن‌شیرازی: ppm 157٫1 و نایسین: ppm 10٫1. اندازه ذرات، پتانسیل زتا، IC50(DPPH) و راندمان کپسولاسیون نانوژل کیتوزان حاوی ZEO و نایسین به ترتیب 18٫11±411٫39 نانومتر، mV 1٫10 ± 32٫90، mg.mL-1 0٫06 ± 0٫79، 71٫06-82٫69 % بود. افزودن ZEO و نایسین (آزاد یا محصور شده در نانوژل کیتوزان) به فرمولاسیون پنیر سفید ایرانی، کیفیت میکروبی و فیزیکوشیمیایی پنیر را بهبود بخشید. فعالیت ضد میکروبی نانوژل کیتوزان حاویZEO و نایسین در مقایسه با فرم آزاد آن بیش‌تر بود. جمعیت کلی‌فرم پنیرهای تیمار شده با نیترات سدیم و نانوژل کیتوزان حاویZEO-نایسین طی 60 روز نگهداری در محدوده قابل قبول بود. در طول مدت نگهداری، بیشترین تغییرات رنگ و بافت (سختی) نمونه پنیر مربوط به نمونه شاهد و کمترین تغییر مربوط به نمونه‌های تیمار شده با نیترات سدیم و نانوژل کیتوزان-ZEO-نایسین بود (05/0>p). همچنین کیفیت حسی نمونه حاویZEO و نایسین برای ارزیاب حسی قابل قبول بود. نمونه حاوی نانوژل کیتوزان در مدت 60 روز نگهداری نمره حسی قابل قبولی (بالای 3) دریافت کرد. به طور کلی، نانوژل کیتوزان-ZEO-نایسین در افزایش ماندگاری پنیر سفید ایرانی جایگزین مناسبی برای نگهدارنده شیمیایی نیترات سدیم بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing the preparation of chitosan-caffeic acid nanogel containing Shirazi thyme essential oil and nisin and investigating the effect of optimized nanogel on the quality of Iranian white cheese.

نویسندگان English

Seyed Mohammad Hosseini 1
Hamid Tavakolipour 2
Mohsen Mokhtarian 3
Mohammad Armin 1
1 Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
2 azad univ.
3 azad univ.
چکیده English

This study aimed to optimize the formulation of chitosan-caffeic acid nanogel containing Shirazi thyme (Zataria multiflora) essential oil (ZEO) and nisin. The independent variables (the concentration of chitosan nanogel, Shirazi-thyme, and nisin) were optimized based on the highest zeta potential and encapsulation efficiency, besides the lowest particle size and IC50(DPPH) values. The results of The Box-Behnken experimental design and Stepwise-response surface model showed the optimal nanogel formulation was as follows: chitosan concentration= 0.4 g; ZEO= 157.1 ppm and nisin= 10.1 ppm. The particle size, zeta-potential, antioxidant activity, and encapsulation efficiency of the optimal chitosan-ZEO-nisin nanogel were 411.39±18.11 nm, 32.90±1.10 mV, 0.79±0.06 mg.mL-1, 71.06-82.69% respectively. Moreover, the addition of optimized nanogel to the Iranian white cheese formulation showed that the treated cheese samples with ZEO and nisin (free or encapsulated in chitosan nanogel) improved the microbial quality of chess. The antimicrobial activity of the ZEO and nisin encapsulated in chitosan-caffeic acid nanogel was higher than a free form of ZEO-nisin. The Coliforms population of cheeses treated with sodium nitrate and chitosan nanogel containing ZEO-nisin was acceptable during 60 days of storage. During the storage period, the most changes in the color and texture (hardness) of the cheese samples were related to the control sample, and the least change was obtained for samples treated with sodium-nitrate and chitosan nanogel (P < 0.05). Also, the sensory quality of the sample containing ZEO and nisin was acceptable for the sensory evaluator. The sample containing chitosan nanogel received an acceptable sensory score (> 3) during 60 days of storage. In general, the potential of the nanogel in increasing the shelf-life of Iranian white cheese was comparable with sodium nitrate.

کلیدواژه‌ها English

Stepwise-response surface model
Optimization
chitosan-caffeic acid nanogel
Iranian White cheese
Shirazi thyme
coencapsulation
[1] Resa, C.P.O., R.J. Jagus, and L.N. Gerschenson, (2014), Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces. Food Control, 35(1): p. 101-108.
[2] de Campos, A.C.L.P., et al., (2022), Antimicrobial effect of Origanum vulgare (L.) essential oil as an alternative for conventional additives in the Minas cheese manufacture. LWT, 157: p. 113063.
[3] Özel, B., Ö. Şimşek, M. Akçelik, and P.E. Saris, (2018), Innovative approaches to nisin production. Applied microbiology and biotechnology, 102: p. 6299-6307.
[4] González-Solís, J.L., J.C. Martínez-Espinosa, L.A. Torres-González, A. Aguilar-Lemarroy, L.F. Jave-Suárez, and P. Palomares-Anda, (2014), Cervical cancer detection based on serum sample Raman spectroscopy. Lasers in medical science, 29: p. 979-985.
[5] Youseftabar-Miri, N., N. Sedaghat, and S. Khoshnoudi-Nia, (2021), Effect of active edible coating on quality properties of green-raisin and ranking the samples using fuzzy approach. Journal of Food Measurement and Characterization, 15: p. 46-58.
[6] Raeisi, M., H. Tajik, J. Aliakbarlu, S.H. Mirhosseini, and S.M.H. Hosseini, (2015), Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Science and Technology, 64(2): p. 898-904.
[7] Saffari Samani, E., H. Jooyandeh, and B. Alizadeh Behbahani, (2023), The impact of Zedo gum based edible coating containing Zataria multiflora Boiss essential oil on the quality enhancement and shelf life improvement of fresh buffalo meat. Journal of Food Measurement and Characterization: p. 1-13.
[8] Sharif, N., S. Khoshnoudi-Nia, and S.M. Jafari, (2020), Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132: p. 109077.
[9] Iqbal, M.W., et al., (2021), Chitosan‐based materials as edible coating of cheese: A review. Starch‐Stärke, 73(11-12): p. 2100088.
[10] de Carvalho, S.Y.B., et al., (2021), Encapsulation of essential oils using cinnamic acid grafted chitosan nanogel: Preparation, characterization and antifungal activity. International Journal of Biological Macromolecules, 166: p. 902-912.
[11] Torres, K.G., R.R. Almeida, S.Y. de Carvalho, J.F. Haddad, A.A. Leitao, and L.G.d.L. Guimaraes, (2020), Synthesis and characterization of dihydrocaffeic acid grafted chitosan nanogel for nanoencapsulation of Matricaria recutita essential oil. Materials Today Communications, 24: p. 101252.
[12] Li, B.-x., W.-c. Wang, X.-p. Zhang, D.-x. Zhang, W. Mu, and F. Liu, (2017), Integrating uniform design and response surface methodology to optimize thiacloprid suspension. Scientific Reports, 7(1): p. 46018.
[13] Mokhtarian, M., A. Kalbasi-Ashtari, and H.-W. Xiao, (2022), Effects of solar drying operation equipped with a finned and double-pass heat collector on energy utilization, essential oil extraction and bio-active compounds of peppermint (Mentha Piperita L.). Drying Technology, 40(5): p. 897-923.
[14] Daoud, J.I. Multicollinearity and regression analysis. in Journal of Physics: Conference Series. 2017. IOP Publishing.
[15] Koleva, I.I., T.A. Van Beek, J.P. Linssen, A.d. Groot, and L.N. Evstatieva, (2002), Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 13(1): p. 8-17.
[16] Wolf, C. and W. Gibbons, (1996), Improved method for quantification of the bacteriocin nisin. Journal of applied bacteriology, 80(4): p. 453-457.
[17] Damasceno, E.T.S., et al., (2018), Lippia origanoides Kunth. essential oil loaded in nanogel based on the chitosan and ρ-coumaric acid: Encapsulation efficiency and antioxidant activity. Industrial Crops and Products, 125: p. 85-94.
18] Moosavi-Nasab, M. and S. Khoshnoudi-Nia, (2021), Combining knowledge-and data-driven fuzzy approach to evaluate shelf-life of various seafood products. Food Quality and Safety, 5: p. fyab022.
19] Ehsani, A., M. Hashemi, S.S. Naghibi, S. Mohammadi, and S. Khalili Sadaghiani, (2016), Properties of Bunium persicum essential oil and its application in Iranian white cheese against Listeria monocytogenes and Escherichia coli O157: H7. Journal of food safety, 36(4): p. 563-570.
[20] INSO, (2016) Cheddar cheese: Specifications and test methods, Iranian National Standardization Organization: Tehran: Iran. p. 6.
[21] ISO, (2013) Microbiology of the food chain-Horizontal method for the enumeration of microorganisms-Part 1: Colony count at 30° C by the pour plate technique. , International Organization for Standardization
[22] ISO, (2008) Microbiology of food and animal feeding stuffs – Horizontal method for the enumeration of yeasts and moulds – Part 2 : Colony count technique in products with water activity less than or equal to 0,95 International Organization for Standardization: London: London, UK.
[23] ISO, (2006) Microbiology of food and animal feeding stuffs- Horizontal method for the detection and enumeration of coliforms – Most probable number technique., International Organization for Standardization Geneva, Switzerland. p. 1-11.
[24] Lynch, J.M., et al., (2002), Determination of the total nitrogen content of hard, semihard, and processed cheese by the Kjeldahl method: collaborative study. Journal of AOAC International, 85(2): p. 445-455.
[25] Bourne, M., Food texture and viscosity: concept and measurement. 2002: Elsevier.
[26] Cunha, C.R., A.I. Dias, and W.H. Viotto, (2010), Microstructure, texture, colour and sensory evaluation of a spreadable processed cheese analogue made with vegetable fat. Food Research International, 43(3): p. 723-729.
[27] Frøst, M.B., H. Heymann, W.L. Bredie, G.B. Dijksterhuis, and M. Martens, (2005), Sensory measurement of dynamic flavour intensity in ice cream with different fat levels and flavourings. Food Quality and Preference, 16(4): p. 305-314.
[28] López-Meneses, A., et al., (2018), Schinus molle L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. LWT, 96: p. 597-603.
[29] Bazargani-Gilani, B., J. Aliakbarlu, and H. Tajik, (2015), Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innovative food science & emerging technologies, 29: p. 280-287.
[30] Damasceno, E.T., R.R. Almeida, S.Y. de Carvalho, S.S. Vieira, V. Mano, and L.G.d.L. Guimarães, (2020), Nano-encapsulation of lippia origanoides kunth. Essential oil by chitosan-caffeic acid nanogel. Química Nova, 43: p. 16-23.
[31] Zhaveh, S., et al., (2015), Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 69: p. 251-256.
[32] Gedarawatte, S.T., J.T. Ravensdale, H. Al-Salami, G.A. Dykes, and R. Coorey, (2021), Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydrate Polymers, 251: p. 117096.
[33] Wang, H., B. Yang, and H. Sun, (2017), Pectin-Chitosan polyelectrolyte complex nanoparticles for encapsulation and controlled release of nisin. Am. J. Polym. Sci. Technol, 3(5): p. 82.
[34] Lee, E.H., I. Khan, and D.-H. Oh, (2018), Evaluation of the efficacy of nisin-loaded chitosan nanoparticles against foodborne pathogens in orange juice. Journal of food science and technology, 55: p. 1127-1133.
[35] INSO, (2017) Microbiology of milk and milk products –Specifications and test methods, Iranian National Standardization Organization (INSO): Tehran, Iran.
[36] Hashemi, M., A.M. Dastjerdi, S.H. Mirdehghan, A. Shakerardekani, and J.B. Golding, (2021), Incorporation of Zataria multiflora Boiss essential oil into gum Arabic edible coating to maintain the quality properties of fresh in-hull pistachio (Pistacia vera L.). Food Packaging and Shelf life, 30: p. 100724.
[37] Abdollahzadeh, E., M. Rezaei, and H. Hosseini, (2014), Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food control, 35(1): p. 177-183.
[38] Mavalizadeh, A., A. Fazlara, M. PourMahdi, and N. Bavarsad, (2022), The effect of separate and combined treatments of nisin, Rosmarinus officinalis essential oil (nanoemulsion and free form) and chitosan coating on the shelf life of refrigerated chicken fillets. Journal of Food Measurement and Characterization, 16(6): p. 4497-4513.
[39] Esparvarini, Z., B. Bazargani‐Gilani, M. Pajohi‐Alamoti, and A. Nourian, (2022), Gelatin‐starch composite coating containing cucumber peel extract and cumin essential oil: Shelf life improvement of a cheese model. Food Science & Nutrition, 10(3): p. 964-978.