استخراج نانوذرات گیاه آوندول (Smyrnium cordifolium Boiss) و استفاده از آن در تهیه بیوکامپوزیت موسیلاژ بذر یونجه و روغن بذر گیاه خار مریم و بررسی خواص فیزیکوشیمیایی

نویسندگان
دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
زمینه مطالعاتی: افزودن نانوذرات آوندول و اسانس خار مریم می‌تواند سبب بهبود خواص فیزیکوشیمیایی فیلم‌‌های بر پایه موسیلاژ بذر یونجه شود. هدف: هدف در این مطالعه تهیه فیلم‌های خوراکی از موسیلاژ بذر یونجه با نانوذرات آوندول (0، 2، 4 %) و اسانس خار مریم (0، 1، 2 %) بود. روش‌کار: فیلم‌های خوراکی بر پایه موسیلاژ بذر یونجه تهیه شده و نانوذرات آوندول (0، 2، 4 %) و اسانس خار مریم (0، 1، 2 %) به آن افزوده شد. خواص فیزیکوشیمیایی فیلم‌ها تهیه شده بررسی شد. نتایج: مطابق نتایج به دست آمده با افزایش مقدار نانوذرات آوندول و اسانس خار مریم در فیلم باعت کاهش خواص مکانیکی فیلم‌ها شد. نتایج فعالیت ضدمیکروبی نشان داد که افزودن نانوذرات آوندول باعث فعالیت فیلم علیه استافیلوکوکوس اورئوس شد. نتایج پراکنندگی نور دینامیکی (DLS) نانوذرات آوندول را تایید کردند. نتایج تبدیل فوریه فروسرخ (FTIR) حضور فیزیکی نانوذرات آوندول را در ماتریس پلیمری تایید کرد. افزایش نانوذرات آوندول و اسانس خار مریم در فیلم‌ها توانستند تجزیه حرارتی موسیلاژ بذر یونجه را به‌تاخیر بیاندازند و باعث افزایش پایداری حرارتی فیلم موسیلاژ گردند. نتیجه‌گیری نهایی: افزودن نانوذرات آوندول و اسانس خار مریم به فیلم‌های خوراکی بر پایه موسیلاژ بذر یونجه سبب بهبود ضدمیکروبی، فوریه مادون قرمز (FTIR) فیلم‌ها، همچنین موجب تضعیف خواص مکانیکی گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Extraction of nanoparticles of Avondol plant (Smyrnium cordifolium Boiss) and its use in the preparation of alfalfa seed mucilage biocomposite and milk thistle seed oil and investigation of its physicochemical properties.

نویسندگان English

fatemeh khakpour
Sajad Pirsa
university
چکیده English

Study background: adding Smyrnium cordifolium nanoparticles and milk thistle essential oil can improve the physicochemical properties of films based on alfalfa seed mucilage. Purpose: The purpose of this study was to prepare edible films from alfalfa seed mucilage with Smyrnium cordifolium nanoparticles (0, 2, 4%) and milk thistle essential oil (0, 1, 2%). Methodology: Edible films based on alfalfa seed mucilage were prepared and Smyrnium cordifolium nanoparticles (0, 2, 4%) and milk thistle essential oil (0, 1, 2%) were added to it. The physicochemical properties of the prepared films were investigated. Results: According to the obtained results, increasing the amount of Smyrnium cordifolium nanoparticles and milk thistle essential oil in the film decreased the mechanical properties of the films. The results of antimicrobial activity showed that the addition of Smyrnium cordifolium nanoparticles increased the activity of the film against Staphylococcus aureus. The dynamic light scattering (DLS) results confirmed the Smyrnium cordifolium nanoparticles. Fourier transform infrared (FTIR) results confirmed the physical presence of Smyrnium cordifolium nanoparticles in the polymer matrix. The increase of Smyrnium cordifolium nanoparticles and milk thistle essential oil in the films could delay the thermal decomposition of alfalfa seed mucilage and increase the thermal stability of the mucilage film. Final conclusion: Adding Smyrnium cordifolium nanoparticles and milk thistle essential oil to edible films based on alfalfa seed mucilage improved the antimicrobial, Fourier infrared (FTIR) properties of the films, and also weakened the mechanical properties.

کلیدواژه‌ها English

Edible film
Mucilage
Avondol nanoparticles and milk thistle essential oil
(1) P. Abdolsattari, S.H. Peighambardoust, S. Pirsaa, S.J. Peighambardoust and S.H. (2020).Fasihnia, nvestigating microbial properties of traditional Iranian white cheese packed in active LDPE films incorporating metallic and organoclay nanoparticles, Chem Rev Lett 3, 168–174.
(2) S. Pirsa, F. Mohtarami and S. (2020). Kalantari, Preparation of biodegradable composite starch/tragacanth gum/Nanoclay film and study of its physicochemical and mechanical properties, Chem Rev Lett 3, 98–103.
(3) I. KarimiSani, S. Pirsa and S¸.Tagı,(2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite ˘ film and evaluation of physical, mechanical and antimicrobial properties by response surface method, Polym Test 79, 106004.
(4) L. Wu, L.L. Wang and H. Li, (2019). Two polyoxometalate-based coordination polymers: Synthesis, characterization and in vitro anti-lung cancer activity, Main Group Chemistry 18(4) , 337–344.
(5) M. Pirouzifard, R.A. Yorghanlu and S. Pirsa, (2020).Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties, J Thermoplast Compos 33, 915–937.
(6) S. Pirsa, I. KarimiSani, M.K. Pirouzifard and A.(2020). Erfani, Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage, Food Add Contam A 37 , 634–648.
(7) S. Chavoshizadeh, S. Pirsa and F. Mohtarami,(2020). Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite, Food Packaging Shelf 24 , 100501.
(8) S. Asadi and S. Pirsa,(2020). Production of Biodegradable Film Based on Polylactic Acid, Modified with Lycopene Pigment and TiO 2 and Studying Its Physicochemical Properties, J Polym Environ 28 , 433–444.
(9) E. Farshchi, S. Pirsa, L. Roufegarinejad, M. Alizadeh and M.(2019). Rezazad, Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles, Carbohydr Polym 216 , 189–196.
(10) Sothornvit, R. & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50(3), 149-155.
(11) Moghbel, A. & Tayebi, M. (2015). Quince Seeds Biopolymer: Extraction, Drying Methods and Evaluation. Jundishapur Journal of Natural Pharmaceutical Products, 10(3), e25392.
(12) Tosif, M.M.; Najda, A.; Bains, A.; Kaushik, R.; Dhull, S.B.; Chawla, P.; Walasek-Janusz, M. A. (2021).Comprehensive Review on PlantDerived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers 2021, 13, 1066. [CrossRef].
(13) Bacenetti, J., Lovarelli, D., Tedesco, D., Pretolani, R., & Ferrante, V. (2018). Environmental impact assessment of alfalfa (Medicago sativa L.) hay production. Science of the Total Environment, 635, 551–558. https://doi.org/10.1016/j. scitotenv.2018.04.161.
(14) Hojilla-Evangelista, M. P., Selling, G. W., Hatfield, R., & Digman, M. (2017). Extraction, composition, and functional properties of dried alfalfa (Medicago sativa L.) leaf protein. Journal of the Science of Food and Agriculture, 97(3), 882–888.
(15) Cornara, L., Xiao, J., & Burlando, B. (2016). Therapeutic potential of temperate forage legumes: A review. Critical Reviews in Food Science and Nutrition, 56(sup1), S149–S161.
(16) Anthony, K.; Saleh, M.A. (2012).Chemical profiling and antioxidant activity of commercial milk thistle food supplements. J. Chem. Pharm. Res., 4, 4440–4450.
(17) Flora, K.; Hahn, M.; Rosen, H.; Benner, K. (1998).Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroenterol. 93, 139–143. [CrossRef] [PubMed].
(18) Deep, G.; Agarwal, R. (2007). Chemopreventive efficacy of silymarin in skin and prostate cancer. Integr. Cancer Ther. 6, 130–145. [CrossRef].
(19) Pari, N., Parichehreh, Y., Alireza, R., & Naser, A. (2019). The role of Smyrnium cordifolium Boiss extract and curzerene on withdrawal syndrome in mice. Cellular and Molecular Biology, 65(7), 77-83.‏
(20) Abbasi, N., Mohammadpour, S., Karimi, E., Aidy, A., Karimi, P., Azizi, M., & Asadollahi, K. (2017). Protective effects of smyrnium cordifolium boiss essential oil on pentylenetetrazol-induced seizures in mice: Involvement of benzodiazepine and opioid antagonists. Journal of Biological Regulators and Homeostatic Agents, 31(3), 683-689.‏
(21) Tsai, W. T. (2013). Microstructural characterization of calcite-based powder materials prepared by planetary ball milling. Materials, 6(8), 3361-3372.‏
(22) Baláž, M. (2018). Ball milling of eggshell waste as a green and sustainable approach: a review. Advances in colloid and interface science, 256, 256-275.‏
(23) Broseghini, M., Gelisio, L., D’Incau, M., Ricardo, C. A., Pugno, N. M., & Scardi, P. (2016). Modeling of the planetary ball-milling process: The case study of ceramic powders. Journal of the European Ceramic Society, 36(9), 2205-2212.‏
(24) Sipponen, M. H., Laakso, S., & Baumberger, S. (2014). Impact of ball milling on maize (Zea mays L.) stem structural components and on enzymatic hydrolysis of carbohydrates. Industrial Crops and Products, 61, 130-136.
(25) Chaireh, S., Szécsényi, K. M., Boonsuk, P., & Kaewtatip, K. (2019). Preparation of rubber seed shell powder by planetary ball milling and its influence on the properties of starch foam. Industrial Crops and Products, 135, 130-137.‏
(26) Wu, G.C.; Zhang, M.; Wang, Y.Q.; Mothibe, K.J.; Chen, W.X. (2012). Production of silver carp bone powder using superfine grinding technology: Suitable production parameters and its properties. J. Food Eng .109, 730–735.
(27) Jiang, C. Li, X. Jiao, Y. Jiang, D. Zhang, L. Fan, B. and Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydrate Polymers, 110, 10-17.
(28) Taherkhani P, Noori N, Akhondzadeh Basti A, Gandomi H, Alimohammadi M. (2014). Antimicrobial Effects of Kermanian Black Cumin (Bunium persicum Boiss.) Essential Oil in Gouda Cheese Matrix. J. Med. Plants 54 (2): 76 - 86.
(29) Khakpour, F.; Pirsa, S.; Amiri, S. (2023). Modifed Starch/CrO/Lycopene/Gum Arabic Nanocomposite Film: Preparation, Investigation of Physicochemical Properties and Ability to Use as Nitrite Kit. Journal of Polymers and the Environment.
(30) Naiu, A.S.; Berhimpon, S.; Montolalu, R.I.; Kawung, N.J.; Suptijah, P.(2020). The effect of HCL-thermal pressure hydrolysis and high-speed destruction of chitin on particle size distribution and functional group of nano-chitin compound. Curr. Res. Nutr. Food Sci. 8, 197–205.
(31) Liang, N.; Sun, S.; Li, X.; Piao, H.; Piao, H.; Cui, F.; Fang, L.(2012). Alpha-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: Preparation, characterization and in vitro/in vivo evaluations. Int. J. Pharm. 423, 480–488.
(32) Rizvi, S.A.A.; Saleh, A.M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 26, 64–70.
(33) Stack, M.; Parikh, D.; Wang, H.; Wang, L.; Xu, M.; Zou, J.; Cheng, J.; Wang, H.(2018). Electro spun nanofibers for drug delivery. In Electrospinning: Nanofabrication and Applications; Elsevier Inc.: Amsterdam, The Netherlands, pp. 735–764.
(34) Wang, J.; Tan, J.; Luo, J.; Huang, P.; Zhou, W.; Chen, L.; Long, L.; Zhang, L.; Zhu, B.; Yang, L.; et al. (2017). Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J. Nanobiotechnol. 15, 1–17.
(35) Imansari, F.; Sahlan, M.; (2017). Arbianti, R. Release profile and inhibition test of the nanoparticles a. paniculata extract as inhibitor of α-Glucosidase in the process of carbohydrates breakdown into glucose Diabetes mellitus. IOP Conf. Ser. Mater. Sci. Eng. C. 214, 012026.
(36) El-Far, Y.M.; Zakaria, M.M.; Gabr, M.M.; El Gayar, A.M.; Eissa, L.A.; El-Sherbiny, I.M. (2017). Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: Potential use of curcumin nanoformulation. Nanomedicine, 12, 1689–1711.
(37) MacDougall, D. B. (Ed.). (2002). Colour in food: improving quality. Woodhead Publ.
(38) Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate polymers, 109, 118-125.‏
(39) Srinivasan, M; Devipriya, N; Kalpana, K.B; and Menon, V.P.(2009). Lycopene: An antioxidant and radioprotector against radiation-induced cellular damaves in cultured human lymphocytes. Toxicol, 262: 43-49.
(40) Maizura F, Fazilah S, Norziah S and Karim B, (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starchealginate edible film containing lemongrass oil. Journal of Food Science 72: 324-330.
(41) Pranoto, Y, Rakshit, SK, & Salokhe, VM. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT-Food Science and Technology, 38(8), 859-865.
.
(42) Lin D H, Xing B S. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root elongation. Environ. J Pollut. 150:243-250.
(43) Martel S.(2005). Method and system for controlling micro-objects or micro-particles. United States patent US 20100215785. Appl. 11/145,007.
(44) King M D, Humphrey B J, Wang Y F, Kourbatova E V, Blumberg H M. Emergence of community-acquired methicillin- resistant staphylococcus aurous USA 300 clone as The predominant cause of skin and soft-tissue infections. Ann Intern Med. 2006;144:309-317.
(45) Cao, X., Chen, Y., Chang, P.R., Stumborg, M. & Huneault, M.A. (2008). Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science, 109(6), 3804- 3810.
(46) Zhang Y., Yu C., Hu P., Tong W., Lv F., Chu P.K., and Wang F., Mechanical and Thermal Properties of Palygorskite Poly(butylene succinate) Nanocomposite, Appl. Clay Sci., 119, 96-102, 2016.
(47) Swaroop, C. & Shukla, M. (2019). Development of blown polylactic acid-Mg nanocomposite films for food packaging Composites Part A: Applied Science and Manufacturing.
(48) Phisalaphong, M., & Jatupaiboon, N., (2008). Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydrate Polymers, 74(3), 482-488.
(49) Das, S., Das, M. P., & Das, J., (2013). Fabrication of porous chitosan/silver nanocomposite film and its bactericidal efficacy against multi-drug resistant (MDR) clinical isolates. Journal of Pharmacy Research, 6(1), 11-15.