بررسی اثر تیمارهای فرابنفش و فراصوت بر عمر پس از برداشت میوه انبه رقم لانگرا

نویسندگان
1 دانش آموخته کارشناسی ارشد، گروه علوم باغبانی، دانشگاه هرمزگان
2 هیئت علمی گروه علوم باغبانی، دانشگاه هرمزگان، بندرعباس، ایران
3 هیئت علمی بخش زراعی باغی. مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، سازمان تحقیقات، آموزش و ترویج کشاورزی، قزوین، ایران
4 دانشیار گروه علوم باغبانی، دانشگاه هرمزگان، بندرعباس، ایران.
چکیده
به منظور افزایش کیفیت و عمر انباری میوه­های انبه رقم لانگرا، آزمایشی به ­صورت فاکتوریل با سه فاکتور در قالب طرح کاملاً تصادفی با سه تکرار (هر تکرار 18 میوه) انجام شد. میوه­های انبه در مرحله سبز بالغ از یک باغ تجاری انبه در شهرستان رودان استان هرمزگان برداشت شدند. فاکتور اول پرتوتابی اشعه فرابنفش (UV-C) با شدت ­25 وات در سه سطح ( 0، 5 و 10 دقیقه)، فاکتور دوم پرتوتابی فراصوت (اولتراسونیک) با فرکانس 35 کیلو هرتز و توان 280 وات در سه سطح (0، 3 و 6 دقیقه) و فاکتور سوم زمان انبارمانی در پنج سطح (0، 10، 20، 30 و 40 روز) بودند. میوه­ها پس از تیمار با نسبت­های ذکر­ شده از UV-C و فراصوت به سردخانه با دمای10 درجه سانتی­گراد و رطوبت نسبی 80-85 درصد منتقل شدند و نمونه­گیری و اندازه­گیری­ها در زمان­های مختلف انجام شد. تیمارهای فرابنفش و فراصوت از افزایش L (روشنایی)، a و b گوشت میوه و pH و کاهش اسید آسکوربیک میوه با گذشت زمان ممانعت کردند. در تیمارهای فراصوت، بیشترین آسکوربیک اسید (3/11 میلی­گرم در 100 گرم) در پرتوتابی فراصوت سه دقیقه مشخص شد. در تیمارهای فرابنفش نیز کاهش آسکوربیک­اسید با گذشت زمان کمتر از شاهد بود اما بین پرتوتابی پنج و ده دقیقه تفاوت معنی­دار نبود. تیمار فراصوت 6 دقیقه از کاهش معنی­دار وزن میوه جلوگیری کرد. در روز 40 انبارمانی، کمترین مقدار L گوشت میوه (44/89) متعلق به تیمار فرابنفش پنج دقیقه بود. بنابراین طی چهل روز انبارمانی میوه انبه، تیمار فرابنفش به مدت پنج دقیقه به دلیل حفظ ظاهر میوه (L ) و تیمار فراصوت سه دقیقه به­دلیل داشتن بیشترین آسکوربیک­اسید میوه انبه قابل توصیه می­باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the effect of UV-C and ultrasonic treatments on the shelf life of Langra mango fruit

نویسندگان English

Hasan Shorakaie 1
Abdolmajid Mirzaalian Dastjerdi 2
Mostafa Ghasemi 3
Somayeh Rastegar 4
1 MSc. Graduated student, Department of Horticulture, University of Hormozgan, Bandar Abbas, Iran
2 Assistant professor, Department of Horticulture, University of Hormozgan, Bandar Abbas, Iran
3 Horticulture Crops Research Department, Qazvin Agricultural and Natural Resources Research and Education Center, AREEO, Qazvin, Iran.
4 Associate professor, Department of Horticulture, University of Hormozgan, Bandar Abbas, Iran
چکیده English

To increase the quality and shelf life of mango fruits (Manjifera indica cv. Langra), a factorial experiment was conducted in the form of a completely randomized design with three replications (18 fruits per replication). Mango fruits in mature green stage were harvested from a commercial mango orchard in Roodan city, Hormozgan province. The first factor was ultraviolet radiation (UV-C) with an intensity of 25 watts at three levels (0, 5 and 10 minutes), the second factor was ultrasonic radiation with a frequency of 35 kHz and a power of 280 watts at three levels (0, 3 and 6 minutes) and the third factor was storage time at five levels (0, 10, 20, 30 and 40 days). After the treatment with the mentioned proportions of UV-C and ultrasonic, the fruits were stored at 10°C and a relative humidity of 80-85%, and the sampling and the measurements were carried out at different times. Based on the results, ultraviolet and ultrasound treatments prevented the increase of L (lightness), a and b and pH and the decrease of fruit ascorbic acid over time. In ultrasound treatments, the highest amount of ascorbic acid (11.3 mg/100 grams) was found in irradiation for three minutes. In ultraviolet treatments, the decrease of ascorbic acid with time was less than the control, but there was no significant difference between five and ten minutes. Ultrasound treatment for 6 minutes prevented the significant decrease in fruit weight. On the 40th day of storage, the lowest amount of L in fruit flesh (89.44) belonged to ultraviolet treatment for five minutes. Therefore, within 40 days of storage of mango fruit, ultraviolet treatment for five minutes due to maintaining the appearance of the fruit (L) and ultrasound treatment for three minutes due to maintaining the maximum ascorbic acid of mango fruit are recommended.

کلیدواژه‌ها English

Irradiation
Qualitative traits
shelf life
Nutritional Value
Climacteric
[1] FAO STAT. 2021. FAO Statistics, Food and Agriculture Organization of the United Nations, Rome, Italy. http://faostat.fao.org/.
[2] Anonymous. 2021. Surface cultivation statistics and production and yield of mango products in Iran. Ministry of Agriculture. [in Persian].
[3] Prasanna, V., Prabha, T. N. and Tharanathan, R. N. 2007. Fruit Ripening Phenomena—An Overview. Food Science and Nutrition, 47, 1–19.
[4] Mirzaalian-dastjerdi, A. M., Kalantari, S., babalar M. Zamani, Z. 2013. Effects of Maturity Stage and Storage Temperature on the Quality of ‘Langra’ Mango (Mangifera indica L.) Fruit. Iranian Journal of Horticultural Science. 44(1): 43-59.
[5] Rastegar, S. and Gholamshahipour, H. 2017. Effect of postharvest treatment with putrescine and nitric oxide on some quality attributes of mango fruit. Research in Pomology, 2(1): 1, 1-14 [in Persian].
[6] Khaleghi A, Dadbin E, Asghari Marjanlou A. 2019. The Effect of UV-C Irradiation on Rot Control and Postharvest Quality of Greenhouse Tomato (Solanum lycopersicum cv. Newton). Journal of Statistical Planning and Inference, 10 (3) :13-22 [in Persian].
[7] Liu, C., Cai, L., Han, X. and Ying, T. 2011. Temporary effect of postharvest UV-C irradiation on gene expression profile in tomato fruit. Gene, 486: 56–64.
[8] McKenzie, RL., Björn, LO., Bais, A. and Ilyasd, M. 2003. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochemical and Photobiological Sciences, 2:5–15.
[9] Gonzalez-Aguilar, G.A., Ayala-Zavala, J., Olivas, G., de la Rosa, L. and Álvarez-Parrilla, E. 2010. Preserving quality of fresh-cut products using safe technologies. Journal für Verbraucherschutz und Lebensmittelsicherheit, 5(1)65-72.
[10] Mercier, J., Roussel, D., Charle, M.T. and Arul, J. 2000. Systemic and local response associated with UV-C and pathogen–induced resistance to Botrytis cinerea in stored carrot. Phytopathology, 90(9): 981–986.
[11] Mercier, J., Baka, M., Reddy, B., Corcuff, R. and Arul, J. 2001. Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinerea in bell pepper: Induced resistance and germicidal effects. Journal of the American Society for Horticultural Science, 126: 128–133.
[12] Marquenie, D., Michiels, C.; Geeraerd, A.; Schenk, A.; Soontjens, C.; Van Impe, J. and Nicolaï, B. 2002. Using survival analysis to investigate the effect of UV–C and heat treatment on storage rot of strawberry and sweet cherry. International Journal of Food Microbiology, 73(2-3): 187-196.
[13] Costa, L., Vicente, R.A., Civello, P.M., Chaves, A.R. and Martinez, G.A. 2006. UV-C treatment delays postharvest senescence in broccoli florets. Postharvest Biology and Technology, 39: 204–210.
[14] Gonzalez-Aguilar, G.A., Zavaleta-Gatica, R. and Tiznado-Hernandez, M.E. 2007. Improving postharvest quality of mango ’Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1):108-116.
[15] Promyou, S. and Supapvanich, S. 2016. Physicochemical Changes in ‘Kaew Kamin’ Mango Fruit Illuminated with Ultraviolet-C (UV-C) during Storage. Journal of Agricultural Science and Technology (JAST). 18: 145-154.
[16] Ercan, S.S. and Soysal, C. 2013. Use of ultrasound in food preservation. Natural Science, 8 (2): 5-13.
[17] Bal, E. 2013. Effects of exogenous polyamine and ultrasound treatment to improve peach storability. Chilean Journal of Agricultural Research, 73 (4): 435-440.
[18] Bal, E., Kok, D. and Torcuk, A I. 2017. Postharvest putrescine and ultrasound treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Michele Palieri. Journal of Central European Agriculture, 18(3): 598-615.
[19] Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H. and Wu, F. 2010. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control, 21 (4), 529-532.
[20] Chen, Y., Jiang, Y., Yang, S., Yang, E., Yang, B. and Prasad, K.N. 2012. Effects of ultrasonic treatment on pericarp browning of postharvest litchi fruit. Journal of Food Biochemistry, 36:613-620.
[21] Chen, Z., Zhu, C. 2011. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit. Postharvest Biology and Technology, 61: 117-123.
[22] Bal, E. 2016. Effect of postharvest calcium chloride and ultrasound treatments on storage period and fruit quality of modified atmosphere packed fruit in plum cv. Santa Rosa. Fruit Science, 1:12-18.
[23] Yang, Z.F., Cao, S.F., Cai, Y.T. and Zheng. Y.H. 2011. Combination of salicylic acid and ultrasound to control postharvest blue mold caused by Penicillium expansum in peach fruit. Innovative Food Science and Emerging Technologies, 12:310-314.
[24] Valente M. and Didier, L. 2013. Changes of ultrasound characteristics of mango juice during fruit ripening. In: International Conference of Agricultural Engineering CIGR-AgEng 2012, Valencia, Spain, July 8-12, 2012. CIGR; EurAgEng; Agro Ingenieria. s.l.: s.n., 6 p. International Conference of Agriculture Engineering, Valence, Espagne, 8 July 2012/12 July 2012.
[25] Bolton, J. R. and Linden, K. G. 2003. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 129, 209–215.
[26] Kek, S.P., Chin, N.L. and Yusof, Y.A. 2013. Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91: 495–506.
[27] Hosseini Farahi, M. and Haghanifard, Z. 2017. Effects of aloe vera gel, salicylic acid and hot water on fruit decay and quality properties of sweet lemon fruit during storage. Journal of Crop Production and Processing, 7 (3): 63-78.
[28] Pek. Z., Helyes, L. and Lugasi, A. 2010. Color changes and antioxidant content of vine and postharvest ripened tomato Fruits. Horticultural Science, 45:466-468.
[29] Anon, A. 2011. Fruits, vegetables and derived products–determination of ascorbic acid–part2: routine method, standard No. 14617-2. Iranian National Standardizations Organization, 1st Edition.
[30] Roussos, P.A., Sefferou, V., Denaxa, N.K., Tsantili, E. and Stathis, V. 2011. Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Scientia Horticulturae, 129(3), 472-478.‌
[31] Ahmad A., Hayat S. and Ali, B. 2007. Salicylic acid: Biosynthesis, metabolism and physiological role in plants. In: Salicylic Acid – A Plant Hormone, Springer, 1: 1-14.
[32] Singleton, V.L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3): 144-158.‌
[33] Chen, B., Huang, J., Wang, J. and Huang, L., 2008. Ultrasound effects on the antioxidative defense systems of Porphyridium cruentum. Colloids and Surfaces B: Biointerfaces, 61, 88-92.
[34] Zhi, H., Liu, Q., Xu, J., Dong, Y., Liu, M. and Zong, W., 2017. Ultrasound enhances calcium absorption of jujube fruit by regulating the cellular calcium distribution and metabolism of cell wall polysaccharides. Journal of the Science of Food and Agriculture, 97(15), 5202-5210.
[35] Lagnika, C., Zhang, M. and Mothibe, K.J., 2013. Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology, 82, 87-94.
[36] Barka, E. A., Kalantari, S., Makhlouf, J. and Arul. J. 2000. Impact of UV-C Irradiation on the Cell-wall Degrading Enzymes during Ripening of Tomato (Lycopersicon esculentum L.) Fruit. Journal of Agricultural and Food Chemistry, 48(3): 667-671.
[37] Stevens, C., Liu, J., Khan, V. A., Lu, J. Y., Kabwe, M. K., Wilson, C. L., Igwegbe, E. C. K., Chalutz, E. and Droby, S. 2004. The Effects of Low-dose Ultraviolet Light-C Treatment on Polygalacturonase Activity, Delay Ripening and Rhizopus Soft Rot Development of Tomatoes. Crop Protection, 23(6): 551-554.
[38] Promyou, S. and Supapvanich, S. 2012. Effect of ultraviolet-C (UV-C) illumination on postharvest quality and bioactive compounds in yellow bell pepper fruits (Capsicum annuum L.) during storage. African Journal of Agricultural Research, 7(28): 4084-4096.
[39] Kazemi, M., Aran, M. and Zamani, S. 2011. Effect of salicylic acid treatments on quality charactristics of apple fruits during storage, American Journal of Plant Physiology, 6(2): 113-119.
[40] Maidani, J. and Hashemi Dezfuli, A. 2016. Post harvest Physiology, Agricultural Education Publication [in Persian].
[41] Aday, M.S., Temizkan, R., Buyukcan, M.B. and Caner, C. 2013. An innovative technique for extending shelf life of strawberry: Ultrasound. LWT-Food Science and Technology, 52, 93–101.
[42] Xu, Y., Zhang, L., Zhong, J., Shu, J., Ye, X. and Liu, D., 2013. Power ultrasound for the preservation of postharvest fruits and vegetables. International Journal of Agricultural and Biological Engineering, 6(2), 116-125.
[43] Perkins-Veazie, P. 2007. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biological Technology, 10:1005-1016.
[44] Jiang, Y. and Li, Y. 2001. Effects of Chitosan Coating on Postharvest Life and Quality of Longan Fruit. Food Chem., 73: 139-143.
[45] Lu, J. Y., Stevens, C., Khan, V. A., Kabwe, M. and Wilson, C. L. 1991. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. Journal of Food Quality. 14, 299-305.
[46] Baka, M., Mercier, J., Corcuff, R., Castaigne, F. and Arul, J. 1999. Photochemical treatment to improve storability of fresh strawberries. Journal of Food Science, 64, 1068-1072.
[47] Jalili Marandi, R., Naseri, L., Haji Taghilo, R. and Korsandi, A. 2012. The Effect of UV-C Irradiation on Fruit Quality and Storage Life of Two Apple Cultivars. e Plant Production (Scientific Journal of Agriculture), 35(2), 53-63. [in Persian].
[48] Hadian-Deljou, M. and Sarikhani, H. 2012. Effect of salicylic acid on maintaining post- harvest quality of apple cv. Golabe-Kohanz. Journal of Crops Improvement, 14(2):71-82. [in Persian].
[49] Hosseini, M. 2012. The effect of putrescine and heat treatment on the shelf life and quality of two varieties of pear (Shahmiveh and Spadna). Master's thesis, Department of Horticultural Science and Engineering, University of Tehran [in Persian].
[50] Atress, Amal SH., El-Mogy, M.M., Aboul-Anean, HE. and Alsanius, BW. 2010. Improving strawberry Fruit Storability by Edible Coating as a Carrier of Thymol or Calcium Chloride. Journal of Horticultural Science and Ornamental Plants, 2(3): 88-97.
[51] Barka, E.A. 2001. Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicum esculentum) fruits in response to low amounts of UV-C. Australian Journal of Plant Physiology, 28(8): 785-791.
[52] Liu, L.H., Zabaras, D., Bennett, L.E., Aguas, P. and Woonton, B.W. 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chemistry, 115: 495–500.
[53] Freitas, A., Moldao-Martins, M., Costa, H. S., Albuquerque, T. G., Valente, A., and Sanches- Silva, A. 2015. Effect of UV-C radiaiton on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products. Journal of The Science of Food and Agriculture, 5, 44–52.
[54] Reddy, K. P., Khan, P. A., Patnaik, S., Mohanty, G. B., and Kumar, K. B. 1986. Ascorbate oxidase activity in rice shoot apices during panicle initiation. Plant and Cell Physiology, 27: 725–728.
[55] Guimaraes J.T., Silva, E.K. Ranadheera, C.S. Moraes, J. Raices, R.S.L. Silva M.C., Ferreira, M.S. Freitas, M.Q. Meireles, M.A.A. Cruz, A.G. 2019. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage, Ultrason. Sonochem, 55: 157–164.
[56] Ali, G., Russly, A. R., Jamilah, B., Azizah, O., and Mandana, B. 2011. Effect of heat and thermosonication on kinetics of peroxidase inactivation and vitamin C degradation in seedless guava (Psidium guajava L.). International Food Research Journal, 18(4), 1289–1294.
[57] Jagadeesh, S. L., Charles, M. T., Gariepy, Y., Goyette, B., Raghavan, G. S. V., and Vigneault, C. 2011. Influence of postharvest UV-C hormesis on the bioactive components of tomato during post-treatment handling. Food and Bioprocess Technology, 4: 1463–1472.
[58] Veazie P.P., Collins K.J., and Howard L. 2008. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47: 280-285.
[59] Bravo, S., Garcia-Alonso, J., Martin-Pozuelo, G., Gomez, V., Garcia-Valverde, V., Navarro- Gonzalez, I., and Periago, M. J. 2013. Effects of postharvest UV-C treatment on carotenoids and phenolic compounds of vine-ripe tomatoes. International Journal of Food Science and Technology, 48: 1744–1749.
[60] Bravo, S., Garcia-Alonso, J., Martin-Pozuelo, G., Gomez, V., Santaella, M., Navarro-Gonzalez, I. and Periago, M. J. 2012. The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49: 296–302.
[61] Esua, O.J. Nyuk Ling Chin, N.L., Yusof, Y.A., and Sukor, R. 2019. Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chemistry, 270: 113–122.
[62] Maharaj, R., Arul, J. and Nadeau, P. 2014. UV-C irradiation effects on levels of enzymic and non-enzymic phytochemicals in tomato. Innovative Food Science and Emerging Technologies, 21: 99–106.