بهینه سازی شرایط هیدرولیز و نوع پروتئاز بر درجه هیدرولیز و ویژگی‌های ضداکسایشی پروتئین هیدرولیز شده حاصل از امعاء و احشا ماهی هوور مسقطی(Katsuwonus pelamis) با استفاده از روش سطح پاسخ

نویسندگان
1 دانشجوی دکتری شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 استاد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 استادیار گروه نانوفناوری پزشکی، دانشکده فناوری‌های نوین، دانشگاه علوم پزشکی گلستان
4 دانشیار گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
5 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم
6 دانشیار مرکز تحقیقات سلامت فرآورده‌های غذایی، دارویی و طبیعی، دانشگاه علوم پزشکی گلستان
چکیده
اکسیداسیون در اندام­های زنده باعث بیماری­های خطرناکی از جمله سرطان و در مواد غذایی باعث فساد و ضررهای اقتصادی سنگین می­گردد. آنتی اکسیدان­های سنتزی عوارض نامطلوب و خطرناکی بر سلامتی انسان دارند، از این رو شناسایی ترکیبات ضداکسایشی طبیعی از نیازهای اصلی صنعت مواد غذایی است. در صنایع فرآوری ماهی­ها­ حدود 70-50 % ماهی اولیه که منابع بالقوه­ای از ترکیبات با ارزش تغذیه­ای مانند آمینو اسیدهای ضروری هستند به­عنوان ضایعات تولید می­شود. بنابراین یافتن راهی جهت استفاده­ی بهینه از این ضایعات و تولید ترکیبات سلامتی­بخش با ارزش افزوده­ی بالا مانند پپتیدهای زیست فعال از اهمیت زیادی برخوردار است. در این پژوهش به بررسی تاثیر شرایط هیدرولیز (زمان: 300-30 دقیقه و غلظت آنزیم 3-5/0 درصد) و نوع پروتئاز (آلکالاز و پانکراتین) بر درجه هیدرولیز و ویژگی­های ضداکسایشی (مهار رادیکال DPPH، شلاته کنندگی یون آهن، مهار رادیکال نیتریک اکسید، ظرفیت ضداکسایشی کل و احیاء کنندگی یون آهن) پروتئین هیدرولیز شده حاصل از امعاء و احشا ماهی هوور مسقطی با استفاده از روش سطح پاسخ پرداخته شد. نتایج نشان داد که شرایط بهینه جهت دستیابی به بیشترین ویژگی­های ضداکسایشی با آلکالاز و پانکراتین به­ترتیب عبارت بودند از: زمان هیدرولیز 9/146 و 67/171 دقیقه و غلظت آنزیم 94/1 و 17/2 درصد؛ در این شرایط درجه هیدرولیز پروتئین­های هیدرولیز شده­ی تولیدی 12/25 درصد و 35/20 درصد محاسبه شد. مقایسه ویژگی­های ضداکسایشی هیدرولیز شده­های تولیدی با هردو پروتئاز نشان داد که آنزیم آلکالاز منجر به تولید پروتئین هیدرولیز شده با خواص ضداکسایشی قوی­تری نسبت به پانکراتین شد. بنابراین می­توان نتیجه گرفت که پروتئین هیدرولیز شده امعاء احشا ماهی هوور مسقطی با استفاده از آنزیم آلکالاز به­عنوان یک محصول سلامتی بخش و با ارزش افزوده قابلیت کاربرد در تولید محصولات غذایی فراسودمند و مکمل­های سلامتی بخش استفاده نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of the effect of hydrolysis conditions and type of protease on the degree of hydrolysis and antioxidant properties of the protein hydrolysate from the skipjack fish (Katsuwonus pelamis) viscera by the response surface methodology

نویسندگان English

shima kaveh 1
Alireza Sadeghi Mahoonak 2
vahid erfanimoghaddam 3
Mohammad Ghorbani 4
ali akbar gholamhossein pour 5
Mojtaba Raeisi 6
1 Ph.D. candidate of food chemistry, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Assistant Professor, Food, Drug and Natural Products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
4 Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
6 Associate Professor, Food, Drug and Natural Products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
چکیده English

Oxidation in living organs causes dangerous diseases, including cancer, and in food, it causes spoilage and heavy economic losses. Synthetic antioxidants have adverse and dangerous effects on human health, therefore identifying natural antioxidant compounds is one of the main needs of the food industry. In fish processing industries, about 50-70% of fish, which are potential sources of valuable nutritional compounds such as essential amino acids, are produced as waste. Therefore, finding a way to optimally use these wastes and produce healthy compounds with high added value such as bioactive peptides has great importance. In this research, the effect of hydrolysis conditions (time: 30-300 min and enzyme concentration 0.5-3 %) and type of protease (alcalase and pancreatin) on the degree of hydrolysis and antioxidant properties (DPPH radical scavenging activity, Fe chelating activity, nitric oxide radical inhibition, total antioxidant capacity and Fe reducing power) of protein hydrolysate from skipjack viscera was investigated using the response surface methodology. The results showed that the optimum conditions for achieving the most antioxidant properties with alcalase and pancreatin were: hydrolysis time of 146.9 and 171.67 minutes and enzyme concentration of 1.94 and 2.17%; in these conditions, the degree of hydrolysis of the produced protein hydrolysates was 25.12% and 20.35%, respectively. Comparing the antioxidant properties of hydrolysates produced by both proteases showed that the alcalase enzyme led to the production of protein hydrolysates with stronger antioxidant properties than pancreatin. Therefore, it can be concluded that the protein hydrolysate of the skipjack fish viscera using alcalase enzyme as a healthy and value-added product can be used in the production of functional products and health supplements.

کلیدواژه‌ها English

Antioxidant
Alcalase
pancreatin
Protein hydrolysate
Skipjack
1- Amiri S, Rajabi M. An overview of the application of natural antimicrobial compounds from plant, animal and microbial origin in foods. Journal of food science and technology (Iran). 2022 Jan 10;18(119):143-56.
2- Jafari A, Esmaiili M, Amiri S, Heidari R. Rheological, antioxidant, physicochemical, and biochemical characterization of Iranian monofloral honeys. Journal of Food and Bioprocess Engineering. 2021 Jun 1;4(1):43-52.
3- Amiri S, Sowti Khiabani M, Rezazadeh Bari M, Alizadeh M. Development of the antioxidant activity in cheese whey and milk permeate using Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. Journal of food science and technology (Iran). 2019 Sep 10;16(91):65-79.
4- Radi M, Shadikhah S, Sayadi M, Kaveh S, Amiri S, Bagheri F. Effect of Thymus vulgaris Essential Oil-Loaded Nanostructured Lipid Carriers in Alginate-Based Edible Coating on the Postharvest Quality of Tangerine Fruit. Food and Bioprocess Technology. 2023 Jan;16(1):185-98.
5- Rezazadeh-Bari M, Najafi-Darmian Y, Alizadeh M, Amiri S. Numerical optimization of probiotic Ayran production based on whey containing transglutaminase and Aloe vera gel. Journal of food science and technology. 2019 Jul 1;56:3502-12.
6- Kaveh S, Sadeghi Mahoonak A, Sarabandi K. The Effect of Solvent Type, Time and Extraction Method on the Chemical Compositions and Antioxidant Activity of Eggplant Peel Extract. Karafan Quarterly Scientific Journal. 2020 Aug 22;17(2):129-41.
7- Hashemi SM, Abedi E, Kaveh S, Mousavifard M. Hypocholesterolemic, antidiabetic and bioactive properties of ultrasound-stimulated exopolysaccharide produced by Lactiplantibacillus plantarum strains. Bioactive Carbohydrates and Dietary Fibre. 2022 Nov 1;28:100334.
8- Sadeghi Mahoonak AR, Kaveh S. Assessment of ACE-inhibitory and Antioxidant Activities of the Peptide Fragments from Pumpkin Seeds. Iranian Journal of Nutrition Sciences & Food Technology. 2022 Oct 10;17(3):45-56.
9- Kaveh S, Mahoonak AS, Ghorbani M, Jafari SM. Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products. 2022 Aug 1;182:114908.
10- Muhialdin BJ, Rani NF, Hussin AS. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. Lwt. 2020 Sep 1;131:109776.
11- Wen L, Jiang Y, Zhou X, Bi H, Yang B. Structure identification of soybean peptides and their immunomodulatory activity. Food Chemistry. 2021 Oct 15;359:129970.
12- Yang XR, Zhao YQ, Qiu YT, Chi CF, Wang B. Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Marine drugs. 2019 Jan 24;17(2):78.
13- Kaveh S, Sadeghi MA, Ghorbani M, Jafari M, Sarabandi K. Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology. 2019;14(1).
14- Mazloomi SN, Mahoonak AS, Ghorbani M, Houshmand G. Physicochemical properties of chitosan-coated nanoliposome loaded with orange seed protein hydrolysate. Journal of Food Engineering. 2020 Sep 1;280:109976.
15- Kurozawa LE, Park KJ, Hubinger MD. Spray drying of chicken meat protein hydrolysate: Influence of process conditions on powder property and dryer performance. Drying Technology. 2011 Jan 17;29(2):163-73.
16- Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D, Nasri M. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food chemistry. 2010 Feb 1;118(3):559-65.
17- Ktari N, Fakhfakh N, Balti R, Ben Khaled H, Nasri M, Bougatef A. Effect of degree of hydrolysis and protease type on the antioxidant activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. Journal of Aquatic Food Product Technology. 2013 Sep 3;22(5):436-48.
18- Chi CF, Wang B, Wang YM, Zhang B, Deng SG. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of functional foods. 2015 Jan 1;12:1-0.
19- Hemung BO, Chin KB. Evaluation of pH‐treated fish sarcoplasmic proteins on rheological properties of fish myofibrillar protein mediated by microbial transglutaminase. International Journal of Food Science & Technology. 2014 Oct;49(10):2331-7.
20- He S, Franco C, Zhang W. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International. 2013 Jan 1;50(1):289-97.
21- Chotikachinda R, Tantikitti C, Benjakul S, Rustad T, Kumarnsit E. Production of protein hydrolysates from skipjack tuna (K atsuwonus pelamis) viscera as feeding attractants for A sian seabass (L ates calcarifer). Aquaculture Nutrition. 2013 Oct;19(5):773-84.
22- Nurdiyana H, Siti Mazlina MK, Siti Nor Fadhilah M. Optimization of protein extraction from freeze dried fish waste using response surface methodology (RSM). International Journal of Engineering and Technology. 2008;5(1):48-56
23- Alvand M, Sadeghi MA, Ghorbani M, Shahiri tabarestani H, Kaveh S. Effect of enzyme type and hydrolysis time on antioxidant properties of hydrolyzed turkmen melon seed protein. Journal of Innovation in Food Science and Technology (Iran). 2023; 15(3):99-112.
24- Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry. 2010 Jul 1;121(1):178-84.
25- Tsai PJ, Tsai TH, Yu CH, Ho SC. Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea. Food chemistry. 2007 Jan 1;103(1):181-7.
26- Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food chemistry, 115(1), 238-242.
27- Kaveh, S., Sadeghi, M. A., Ghorbani, M., Jafari, S. M., & Sarabandi, K. (2020). Antioxidant Properties of Fenugreek Bioactive Peptides Prepared with Pancreatin Enzyme.
28- Meshkinfar N, Sadeghi Mahoonak, AR., Ziaiifar AM, Ghorbani M, Kashani Nejad M. (2014). Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Tabriz, Journal of Food Researches 24(2): 215-225.
29- Zhu, K., Zhou, H., & Qian, H. (2006). Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry, 41(6), 1296-1302.
30- Arabshahi-Delouee, S., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), 1233-1240.
31- Mazloomi, S. N., Sadeghi Mahoonak, A., & Houshmand, G. (2019). Determination of optimum conditions for production of antioxidant Peptides derived from hydrolysis of orange seed protein with alkalase enzyme. Journal of food science and technology (Iran), 16(88), 343-356.
32- Ahn, C. B., Je, J. Y., & Cho, Y. S. (2012). Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49(1), 92-98.
33- Shariat alavi M, Sadeghi Mahoonak A, Ghorbani M, Alami M, Mohammadzadeh J. (2019). Determination of Optimum Conditions for Production of Hydrolyzed Protein with Antioxidant Capability and Decrease of Nitric Oxide from Tomato Wastes by Alcalas. Journal of food science and technology (Iran), 15 (84) :137-151
34- Khantaphant, S., Benjakul, S., & Ghomi, M. R. (2011). The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Science and Technology, 44(4), 1139-1148.
35- Ahmadi, H., Yeganeh, S., & Esmaeili Kharyeki, M. (2020). Investigation of antioxidant properties of hydrolyzed protein derived from Common carp (Cyprinus carpio) viscera. Journal of Fisheries, 73(4), 593-606.
36- Oche, J. I., Johnson, T. O., Akinsanmi, A. O., Jaryum, K. H., & Francis, T. (2019). In vitro Antioxidant activity and inhibition of Fe 2+ and SNP lipid peroxidation of African mistletoes (Tapinanthus globiferus) from three selected host plants in Jos Plateau state Nigeria. J. App. Life Sci. int, 20(4), 1-10.
37- Kurozawa, L. E., Park, K. J., & Hubinger, M. D. (2008). Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science, 73(5), C405-C412.
38- Pihlanto A. (2006). Antioxidative peptides derived from milk proteins. International Dairy Journal; 16:1306–14
39- Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), 1317-1327.
40- Maqsoudlou, A., Sadeghi Mahoonak, A. R., Mohebodini, H. (2018). Evaluation of the antioxidant properties Hydrolyzed protein of bee pollen. Journal of food science and technology, 73(14), 227-240.
41- Kong, X., Zhou, H., & Qian, H. (2007). Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chemistry, 101(2), 615-620.
42- Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M., Sarabandi K. (2020). Comparison of antioxidant properties of fenugreek seed protein hydrolyzed with alcalase and pancreatin. Journal of Innovation in Food Science and Technology, 11(4),77-88.
43- Richardson, T. and Hyslop, D.B. (1985). Enzymes. Ch. 6 in Food Chemistry, O.R. Fennema (Ed.), p. 371-476. Marcel Dekker, Inc., New York.
44- Guérard, F., Guimas, L., & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of molecular catalysis B: Enzymatic, 19, 489-498.
45- Sherafat, N., Motamedzadegan, A., Safari, R. (2013). The effect of hydrolysis time of skipjack tuna waste after cooking with alcalase enzyme on recycling efficiency and molecular size of hydrolyzed proteins. Journal of Innovation in Food Science and Technology, 5(3), 47-54.
46- You, L., Zhao, M., Cui, C., Zhao, H., & Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), 235-240.
47- Yasemi. M., Ghomi Marzdashti. M., Darnahal. T., Mohammadzadeh. B., Amini. H. (2013). Yield of protein recovery and degree of hydrolysis associated protein hydrolysates from Bighead Carp (Aristichthys nobilis) by using enzymes. Iranian Scientific Fisheries Journal 22(1). 149-156.