استفاده از طرح مخلوط در بهینه سازی فرمولاسیون فیلم کامپوزیت سه جزئی زیست تخریب پذیر حاوی نشاسته، زئین و پلی وینیل الکل برپایه ویژگی های فیزیکوشیمیایی و مکانیکی

نویسندگان
1 گروه پژوهشی افزودنی های غذایی، پژوهشکده علوم و فناوری مواد غذایی، سازمان جهاد دانشگاهی خراسان رضوی
2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 پژوهشگاه پلیمر و پتروشیمی ایران
4 دانشگاه فردوسی مشهد
چکیده
تولید فیلم­های زیست­ تخریب ­پذیر دارای خواص فیزیکی و مکانیکی قابل قبول و جایگزینی آنها با بسپارهای سنتزی در بسته بندی محصولات غذایی، راه حلی موثر برای کاهش بسیاری از آلودگی­های محیطی است. در این پژوهش با هدف تولید فیلم زیست­ تخریب­ پذیر با ساختار پایدار و با دوام، نشاسته، زئین و PVA با نسبت­های مختلف تعیین شده با استفاده از طرح مخلوط با یکدیگر ترکیب و کامپوزیت­های سه­جزئی تهیه شد. خواص فیزیکی و مکانیکی کامپوزیت­ها مورد مقایسه قرار گرفته و فرمولاسیون بهینه تعیین گردید. بر اساس نتایج به دست آمده، افزودن PVA به نشاسته، سبب بهبود ویژگی­های مکانیکی و افزودن زئین به آن، سبب کاهش حلالیت در آب فیلم­های حاصل گردید. فرمولاسیون بهینه کامپوزیت سه جزئی به­ صورت 85%نشاسته، 15% زئین و 5% PVA با میزان مطلوبیت معادل 98% تعیین شد. الگوی پراش پرتو ایکس کامپوزیت بهینه نشان داد در محدوده θ2برابرº 19-17 و º 24-22 پیک های مشخص در ساختار کامپوزیت ایجاد شده، بنابراین ساختار کامپوزیت به صورت آمورف و در بخش­هایی کریستالی است. بر اساس نتایج بررسی دمانگاشت فیلم کامپوزیت بهینه، بیشترین افت وزنی در محدوده دمایی 340-3/285 درجه سانتیگراد و معادل 2/48% بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The use of mixture design in optimization of biodegradable three-component composite film formulation of starch, zein and PVA based on physicochemical and mechanical properties

نویسندگان English

fereshteh Hosseini 1
Mohhamad Bagher Habibi Najafi 2
Abdolrasol Oromiehie 3
Mehdi Nassiri mahallati 4
Masoud Yavarmanesh 4
1 Food additives research group, food science and technology institute, ACECR, khorasan Razavi.
2 Ferdowsi university of mashhad
3 IRAN POLYMER AND PETROCHEMICAL INSTITUTE
4 Ferdowsi university of mashhad
چکیده English

Production and use of biodegradable films with appropriate physical and mechanical properties and replacing them with synthetic materials is an effective solution to reduce many environmental pollutions. In this study, with the aim of producing biodegradable consistent structure and durable composite films, starch, zein and PVA were mixed with different proportions according to mixture design and ternary composites were prepared.Physical and mechanical properties were compared and optimum formulation were determined. According to the results, adding PVA to starch improved the mechanical properties and adding zein to it reduced the water solubility of the composite films. The optimal formulation of the three-component composite was determined as 85% starch, 15% zein and 5% PVA with a desirability level equal to 98%.The x-ray diffraction patterns of optimal film showed two specified peak at 2θ = 17-19 ° and 2θ = 22-24°, this pattern indicated the amorphous and crystalline structure of the composite film. Finally, differential scanning calorimetry showed that the highest weight loss of composite film is 285/3-340°C equal to 48/2%.

کلیدواژه‌ها English

Composite
Biodegradable
TGA
XRD
[1]. Liu, X., Yu, W. (2006). Evaluating the Thermal Stability of High Performance Fibers by TGA. Applied Polymer Science, 99: 937–944.
[2]. Romero-Bastida, C.A., Bello-Perez, L.A., Garcıa, M.A., Martino, M.N., Solorza-Feria, J. & Zaritzky, N.E. (2005). Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60, 235–244.
[3]. Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3):1-12.
[4]. Garcia M.A., Martinho M.N., Zaritzky N.E. (2000). Microstructural characterization of plasticized starch-based films. Starch/Starke,52:118–124.
[5]. Kumar, P., Sandeep, K. P., Alavi, S. V., Truong, D. and Gorga, R. E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal of Food Engineering,100: 480-489.
[6]. Dias A.B, Muller C.M.O, Larotonda F.D.S, Laurindo J.B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51: 213–219.
[7]. Talja R.A. Helen H., Roos Y.H., Jouppila K. (2008). Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohydrate Polymers, 71:269–276.
[8]. Lafargue D., Lourdin D., Doublier J.L. (2007).Film-forming properties of a modified starch/j-carrageenan mixture in relation to its rheological behavior. Carbohydrate Polymers, 70:101–111.
[9]. Hernandez O., Emaldi U., Tovar J. (2008). In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers, 71:648–655.
[10]. Ghanbarzadeh B, Almasi H, Entezami A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative Food Science and Emerging Technologies, 11: 697–702.
[11]. Shukla, R., Cheryan, M., (2001). Zein: the industrial protein from corn. Industrial Crops and Products, 13(3):171–192.
[12]. Lawton, J.W. (2004). Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cereal Chemistry, 81(1):1–5.
[13]. Wang, Q., & Padua, G.W. (2005). Properties of zein films coated with drying oils, Journal of Agricultural and Food Chemistry, 53: 3444– 3448.
[14]. Bertuzzi, M.A. Castro Vidaurre, E.F. Armada, M. & Gottifredi. J.C. (2007).Water vapor permeability of edible starch based films. Journal of Food Engineering, 80, 972–978.
[15]. Tihminlioglu, F., Dogan Atik, I., Ozen, B. (2010). Water vapor and oxygen-barrier performance of corn–zein coated polypropylene films. Journal of Food Engineering, 96:342–347.
[16]. Zou G X, Qu J P, Zou X L. (2007). Optimization of water absorption of starch/PVA composites. Polym Compos: 674-679.
[17]. Hu,G., Chen, J. & Gao,J. (2009). Preparation and characteristics of oxidized potato starch films. Carbohydrate Polymers, 76 , 291–298.
[18]. Yan, Q., Hou, H., Guo, P. & Dong, H. (2011). Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydrate Polymers.
[19]. Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film and Sheet, 13, 287–298.
[20]. Huang Z., Guo Y.h., Zhang T., Zhang X., Guo L. (2013). Fabrication and Characterizations of Zeolite b–filled Polyethylene Composite Films. Packaging technology and science, 26(1): 1-10.
[21]. Arora S., Lal S., Sharmab C., Aneja K.R. (2011). Synthesis, thermal and antimicrobial studies of chitosan/starch/poly(vinyl alcohol) ternary blend films. Der Chemica Sinica, 2(5):75-86.
[22]. Paulis, J.W. (1982). Recent developments in corn protein research. Journal of Agricultural and Food Chemistry, 30 (1):14–20.
[23]. Koo O.M.Y., Fiske J.D., Yang H., Nikfar F., Thakur A., Scheer B., Adams1 M.L. (2011). Investigation into Stability of Poly(Vinyl Alcohol)-Based Opadry® II Films. AAPS PharmSciTech, 12(2): 746-754.
[24]. Gontard N, Guilbert S, Cuq J. L. (1992). Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57: 190–195.
[25]. Piyaporn K, Duangdao A, Duanghathai P, Kawee S.(2007). Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polymers, 67: 155–163.
[26]. Wu J. (2003). The interfacial properties and porous structures of polymer blends characterized by synchrotron small-angle X-ray scattering. Polymer, 44 (26): 8033–8040.
[27]. Zeng M., Huanga Y., Lua L., Fana L., Lourdinc D. (2011). Effects of filler-matrix morphology on mechanical properties of corn starch–zein thermo-moulded films. Carbohydrate Polymers, 84: 323–328.
[28]. Habeych, E., Dekkers B., Goot A.J.V., Boom R. (2008). Starch–zein blends formed by shear flow. Chemical Engineering Science, 63: 5229 – 5238.
[29]. Cornell, J. (2002). Experiments with mixtures: Designs, models, and the analysis of
Mixture data (3rd ed.). New York: John Wiley and Sons, Inc.
[30]. Liu, X., Yu, W. (2006). Evaluating the Thermal Stability of High Performance Fibers by TGA. Applied Polymer Science, 99: 937–944.