اثرات شدت و مدت فراصوت بر ویسکوزیته ظاهری، ضریب قوام و شاخص رفتار جریان محلول صمغ گوار

نویسندگان
1 دانشیار گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
2 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
چکیده
صمغ گوار یک بیوپلیمر است که در صنایع غذایی از آن به‌عنوان عامل غلیظ کننده، تثبیت‌کننده و پوشش خوراکی استفاده می‌شود. محلول آبی این صمغ دارای ویسکوزیته بالا و رفتار شبه پلاستیک است. این پژوهش با هدف تجزیه و تحلیل اثرات فراصوت در شدت‌ها (0، 75 و 150 وات) و بازه‌های زمانی (0، 5، 10، 15 و 20 دقیقه) مختلف بر ویسکوزیته و رفتار رئولوژیکی محلول صمغ گوار انجام شد. نتایج نشان داد که ویسکوزیته ظاهری محلول صمغ گوار (نمونه تیمار نشده) با افزایش سرعت برشی از 2/12 به 5/134 برثانیه، از 070/0 به 030/0 پاسکال ثانیه کاهش یافت. همچنین، ویسکوزیته ظاهری محلول صمغ گوار با افزایش زمان فراصوت از 0 تا 20 دقیقه، از 046/0 به 021/0 پاسکال ثانیه کاهش یافت (سرعت برش = 49 برثانیه و توان = 150 وات). معادلات رئولوژیکی مختلف (قانون توان، بینگهام، هرشل بالکلی، کاسون و وکادلو) برای برازش مقادیر تجربی مورد استفاده قرار گرفتند و یافته‌های مطالعه حاضر تأیید کرد که مدل قانون توان بهترین برازش برای توضیح رفتار جریان محلول صمغ گوار را ارائه می‌دهد. ضریب قوام محلول صمغ گوار با افزایش زمان فراصوت از 0 تا 20 دقیقه به‌طور معنی‌داری از Pa.sn 202/0 به Pa.sn 063/0 کاهش یافت (05/0>p). علاوه بر این، ضریب قوام محلول صمغ گوار با افزایش توان فراصوت به‌طور قابل‌توجهی کاهش یافت (05/0>p). شاخص رفتار جریان محلول صمغ گوار نیز با افزایش شدت و زمان تیماردهی با فراصوت به‌طور معنی‌داری افزایش یافت (05/0>p).
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effects of ultrasonic intensity and duration on the apparent viscosity, consistency coefficient, and flow behavior index of guar gum solution

نویسندگان English

Fakhreddin Salehi 1
Moein Inanloodoghouz 2
1 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
2 MSc Student, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
چکیده English

Guar gum is a biopolymer that is used in the food industry as a thickener, stabilizer, and edible coating. The aqueous solution of this gum has high viscosity and pseudoplastic behavior. This research aimed to analyze the impacts of sonication at different intensities (0, 75, and 150 W) and time intervals (0, 5, 10, 15, and 20 min) on the viscosity and rheological behavior of guar gum solution. The results showed that the apparent viscosity of guar gum solution (untreated sample) reduced from 0.070 to 0.030 Pa.s with increasing shear-rate from 12.2 s-1 to 134.5 s-1. Also, the apparent viscosity of guar gum solution reduced from 0.046 to 0.021 Pa.s with increasing the sonication time from 0 to 20 min (shear-rate=49 s-1 and power= 150 W). Various rheological equations (Power law, Bingham, Herschel-Bulkley, Casson, and Vocadlo) were employed to fit the empirical values, and the findings of the current study confirmed that the Power law model was the best fit to explain the flow behavior of guar gum solution s. The consistency coefficient of guar gum solution significantly reduced from 0.202 Pa.sn to 0.063 Pa.sn (p<0.05) with increasing sonication time from 0 to 20 min. Furthermore, the consistency coefficient of guar gum solution decreased considerably (p<0.05) while the ultrasonic power enhanced. The flow behavior index of guar gum solution increased significantly (p<0.05) while the intensity and duration of ultrasound treatment increased.

کلیدواژه‌ها English

Apparent viscosity
Guar Gum
Power law
Rheological models
Ultrasound
[1] Salehi, F. 2020. Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review, Journal of Texture Studies. 51, 361-370.
[2] Li, Y., Hilliard, C., Kuo, T.-C., Nelson, C., Rinken, M., Broomall, C., Hawkes, A., Pearce, E., Donate, F., Ouellette, S., Kalantar, T. H. 2023. Chemical composition, particle size, and molecular weight distributions of chemically degraded guar gum solutions, Journal of Applied Polymer Science. 140, e53914.
[3] Iftikhar, A., Rehman, A., Usman, M., Ali, A., Ahmad, M. M., Shehzad, Q., Fatim, H., Mehmood, A., Moiz, A., Shabbir, M. A., Manzoor, M. F., Siddeeg, A. 2022. Influence of guar gum and chitosan enriched with lemon peel essential oil coatings on the quality of pears, Food Science & Nutrition. 10, 2443-2454.
[4] Salehi, F., Goharpour, K., Razavi Kamran, H. 2023. Optimization of sonication time, edible coating concentration, and osmotic solution °Brix for the dehydration process of quince slices using response surface methodology, Food Science & Nutrition. 11, 3959-3975.
[5] Akhila, K., Sultana, A., Ramakanth, D., Gaikwad, K. K. 2023. Monitoring freshness of chicken using intelligent pH indicator packaging film composed of polyvinyl alcohol/guar gum integrated with Ipomoea coccinea extract, Food Bioscience. 52, 102397.
[6] Ghaderi, S., Hesarinejad, M. A., Shekarforoush, E., Mirzababaee, S. M., Karimpour, F. 2020. Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of Alyssum homolocarpum seed gum, Food Science & Nutrition. 8, 5571-5579.
[7] Salehi, F. 2023. Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review, Food Bioscience. 51, 102307.
[8] Singh, S., Bhat, H. F., Kumar, S., Lone, A. B., Aadil, R. M., Aït-Kaddour, A., Hassoun, A., Proestos, C., Bhat, Z. F. 2023. Ultrasonication and microwave pre-treated locust protein hydrolysates enhanced the storage stability of meat emulsion, Ultrasonics Sonochemistry. 98, 106482.
[9] Ali, M., Manzoor, M. F., Goksen, G., Aadil, R. M., Zeng, X.-A., Iqbal, M. W., Lorenzo, J. M. 2023. High-intensity ultrasonication impact on the chlorothalonil fungicide and its reduction pathway in spinach juice, Ultrasonics Sonochemistry. 94, 106303.
[10] Farizadeh, S., Abbasi, H. 2023. Effect of ultrasonic waves on structural, functional and rheological properties of locust bean gum, Iranian Food Science and Technology Research Journal. 19, 365-381.
[11] Raoufi, N., Kadkhodaee, R., Fang, Y., Phillips, G. O. 2019. Ultrasonic degradation of Persian gum and gum tragacanth: Effect on chain conformation and molecular properties, Ultrasonics Sonochemistry. 52, 311-317.
[12] Li, J., Li, B., Geng, P., Song, A.-X., Wu, J.-Y. 2017. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water, Food Hydrocolloids. 70, 14-19.
[13] Muñoz-Almagro, N., Montilla, A., Moreno, F. J., Villamiel, M. 2017. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment, Ultrasonics Sonochemistry. 38, 807-819.
[14] Du, B., Jeepipalli, S. P. K., Xu, B. 2022. Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication, Ultrasonics Sonochemistry. 90, 106170.
[15] Wei, Y., Li, G., Zhu, F. 2023. Impact of long-term ultrasound treatment on structural and physicochemical properties of starches differing in granule size, Carbohydrate Polymers. 320, 121195.
[16] Li, R., Feke, D. L. 2015. Rheological and kinetic study of the ultrasonic degradation of xanthan gum in aqueous solution: Effects of pyruvate group, Carbohydrate Polymers. 124, 216-221.
[17] Mirzababaee, S. M., Ozmen, D., Hesarinejad, M. A., Toker, O. S., Yeganehzad, S. 2022. A study on the structural, physicochemical, rheological and thermal properties of high hydrostatic pressurized pearl millet starch, International Journal of Biological Macromolecules. 223, 511-523.
[18] Salehi, F., Inanloodoghouz, M., Karami, M. 2023. Rheological properties of carboxymethyl cellulose (CMC) solution: Impact of high intensity ultrasound, Ultrasonics Sonochemistry. 101, 106655.
[19] Salehi, F., Inanloodoghouz, M. 2023. Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums, International Journal of Biological Macromolecules. 253, 127828.
[20] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process, Ultrasonics Sonochemistry. 99, 106591.
[21] Kumar, Y., Roy, S., Devra, A., Dhiman, A., Prabhakar, P. K. 2021. Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability, LWT. 149, 111632.
[22] Oloruntoba, D., Ampofo, J., Ngadi, M. 2022. Effect of ultrasound pretreated hydrocolloid batters on quality attributes of fried chicken nuggets during post-fry holding, Ultrasonics Sonochemistry. 91, 106237.
[23] Cui, S. W.2005. Structural analysis of polysaccharides, CRC press, United States.
[24] Sarraf, M., Naji-Tabasi, S., Beig-babaei, A. 2021. Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum, Food Science & Nutrition. 9, 6728-6736.
[25] Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., Yonghong, M. 1996. Rheological models for xanthan gum, Journal of Food Engineering. 27, 203-209.
[26] Song, K.-W., Kim, Y.-S., Chang, G.-S. 2006. Rheology of concentrated xanthan gum solutions: Steady shear flow behavior, Fibers and Polymers. 7, 129-138.
[27] Koocheki, A., Hesarinejad, M. A., Mozafari, M. R. 2022. Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts, Chemical and Biological Technologies in Agriculture. 9, 61.
[28] Koocheki, A., Razavi, S. M. A., Hesarinejad, M. A. 2012. Effect of extraction procedures on functional properties of eruca sativa seed mucilage, Food Biophysics. 7, 84-92.
[29] Yang, Y., Chen, D., Yu, Y., Huang, X. 2020. Effect of ultrasonic treatment on rheological and emulsifying properties of sugar beet pectin, Food Science & Nutrition. 8, 4266-4275.
[30] Xu, D., Feng, L., Cao, Y., Xiao, J. 2016. Impact of ultrasound on the physical properties and interaction of chitosan–sodium alginate, Journal of Dispersion Science and Technology. 37, 423-430.