تاثیر صمغ های زانتان و دانه بادرنجبویه بر ویژگی های فیزیکوشیمیایی، تشکیل آکریل آمید و پذیرش نان باگت

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه آزادی اسلامی واحد سروستان
2 گروه صنایع غذایی، دانشگاه آزاد اسلاوی واحد سروستان
3 گروه علوم و صنایع غذایی، دانشگاه فسا
4 دانشگاه علوم پزشکی بقیه الله (عج)
چکیده


آکریل آمید به عنوان یک ترکیب سمی و سرطان زا در بسیاری از غذاهای پخته شده یا سرخ شده یافت می­شود. در این کار، اثر صمغ دانه بادرنجبویه در غلظت 1% (وزنی/وزنی) بر تشکیل آکریل آمید در نان بررسی و با نان باگت حاوی زانتان 1% (وزنی/وزنی) و نمونه شاهد مقایسه شد. افزودن صمغ دانه بادرنجبویه سطح رطوبت نان ها را از 1/22 درصد به 6/23 درصد افزایش داد (05/0 ˂p). میزان آکریل آمید نان فاقد صمغ و نان­های که حاوی صمغ دانه بادرنجبویه و صمغ زانتان بودند به ترتیب 1180، 75/836 ،6/1167 نانوگرم در گرم بود. افزودن صمغ دانه بادرنجبویه سختی نمونه ها را از 3380 گرم به 730 گرم کاهش داد و نان حاوی صمغ زانتان کمترین سختی (410 گرم) را نشان داد. افزودن صمغ دانه بادرنجبویه به فرمول نان باعث افزایش مقادیر *L (روشنایی) و *b (آبی/زرد) و کاهش مقدار *a (قرمز/سبز) نمونه­ها شد. نتایج ارزیابی حسی نشان داد که افزودن صمغ دانه بادرنجبویه باعث بهبود تخلخل، نرمی، طعم و مزه، عطر، رنگ، جویدن و خاصیت ارتجاعی نمونه‌ها شد. در نتیجه، صمغ دانه بادرنجبویه می تواند به عنوان یک کاندید بالقوه با کارایی عالی برای کاهش آکریل آمید در نان باکت استفاده شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effects of Xanthan gum and Melissa officinalis seed gum on physicomechanical properties, acrylamide formation, and acceptability of baguette bread

نویسندگان English

Zahra Jafari 1
Alireza Shirazinejad 2
Seyed Mohammad Bagher Hashemi 3
Morteza Morteza 4
1 Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
2 Department of Food Science and Technology, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
3 Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fars, Iran
4 Health Research Center, Life style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
چکیده English

Acrylamide, as a toxic and carcinogenic compound, is found in many cooked or fried foods. In this work, the effect of Melissa Officinalis seed gum (MOSG) in the concentration of 1% (w/w) was investigated on acrylamide formation in bread and compared with baguette bread containing xanthan 1% (w/w) and control sample (without gum). The addition of MOSG increased the moisture level of the bread samples from 22.1% to 23.6% (p> 0.05). The acrylamide content of bread and those containing MOSG and xanthan gum were 1180, 836.75, and 1167.6 ng/g, respectively. The addition of MOSG reduced the hardness of the samples from 3380 g to 730 g and the bread containing xanthan gum showed the lowest hardness (410 g). The addition of MOSG to the bread’s formulation increased L* (brightness) and b* (blue/yellow) values and reduced a* (red/green) value of the samples. The sensory evaluation results demonstrated that the addition of MOSG improved porosity, softness, flavor and taste, aroma, color, chewiness, and elasticity of the samples. In conclusion, MOSG was found to be a potential candidate with excellent efficiency to be used for the reduction of acrylamide from bread.

کلیدواژه‌ها English

Melissa Officinalis
Gum
Acrylamide
Xanthan
Baguette bread
[1] C. Sarion, G.G. Codină, A. Dabija, International Journal of Environmental Research and Public Health, 18 (2021) 4332.
[2] E.P. López, M.C. Goldner, LWT-Food Science and Technology, 64 (2015) 1171-1178.
[3] D.W. Liyanage, D.P. Yevtushenko, M. Konschuh, B. Bizimungu, Z.-X. Lu, Food Control, 119 (2021) 107452.
[4] S. Žilić, I.G. Aktağ, D. Dodig, M. Filipović, V. Gökmen, Food research international, 132 (2020) 109109.
[5] J.S. Elmore, G. Koutsidis, A.T. Dodson, D.S. Mottram, B.L. Wedzicha, Journal of Agricultural and Food Chemistry, 53 (2005) 1286-1293.
[6] Z. Fu, M.J. Yoo, W. Zhou, L. Zhang, Y. Chen, J. Lu, Food Chemistry, 242 (2018) 162-168.
[7] E. Abedi, S.M.B. Hashemi, F. Ghiasi, Food Research International, (2023) 113177.
[8] S. Movahed, G. Khalatbari Mohseni, H. Ahmadi Chenarbon, Innovative Food Technologies, 1 (2014) 39-48.
[9] M. Friedman, C.E. Levin, Journal of agricultural and food chemistry, 56 (2008) 6113-6140.
[10] D. Martín-Vertedor, A. Fernández, A. Hernández, R. Arias-Calderón, J. Delgado-Adámez, F. Pérez-Nevado, Food Control, 108 (2020) 106888.
[11] Y. Zhu, Y. Luo, G. Sun, P. Wang, X. Hu, F. Chen, Food Chemistry, 326 (2020) 126982.
[12] L. Jiao, H. Chi, Z. Lu, C. Zhang, S.R. Chia, P.L. Show, Y. Tao, F. Lu, Journal of bioscience and bioengineering, 129 (2020) 672-678.
[13] H. Dortaj, M. Yadegari, M.H.S. Abad, A.A. Sarcheshmeh, M. Anvari, Basic and Clinical Neuroscience, 9 (2018) 27.
[14] X. Zeng, K.-W. Cheng, Y. Jiang, Z.-X. Lin, J.-J. Shi, S.-Y. Ou, F. Chen, M. Wang, Food Chemistry, 116 (2009) 34-39.
[15] A. Kamkar, P. Qajarbeygi, B. Jannat, A. Haj Hosseini Babaei, A. Misaghi, E. Molaee Aghaee, Toxin Reviews, 34 (2015) 1-5.
[16] E. Bråthen, S.H. Knutsen, Food Chemistry, 92 (2005) 693-700.
[17] J. Liu, X. Liu, Y. Man, Y. Liu, Journal of the Science of Food and Agriculture, 98 (2018) 336-345.
[18] Y. Zhang, W. Xu, X. Wu, X. Zhang, Y. Zhang, Food additives and contaminants, 24 (2007) 242-251.
[19] A. Napolitano, F. Morales, R. Sacchi, V. Fogliano, Journal of agricultural and food chemistry, 56 (2008) 2034-2040.
[20] Š.S. Herodež, M. Hadolin, M. Škerget, Ž. Knez, Food Chemistry, 80 (2003) 275-282.
[21] J. Patora, B. Klimek, Acta Poloniae Pharmaceutica, 59 (2002) 139-144.
[22] M. Mohebbi, M. Fathi, M. Khalilian-Movahhed, Bioactive Carbohydrates and Dietary Fibre, (2022) 100315.
[23] X. Zeng, K.-W. Cheng, Y. Du, R. Kong, C. Lo, I.K. Chu, F. Chen, M. Wang, Food Chemistry, 121 (2010) 424-428.
[24] J. Michalak, E. Gujska, A. Kuncewicz, Journal of Food Composition and Analysis, 32 (2013) 68-73.
[25] Z. Sheikholeslami, M. Mahfouzi, M. Karimi, T. Hejrani, M. Ghiafehdavoodi, M. Ghodsi, Food Science and Technology International, 27 (2021) 413-425.
[26] S. Naji-Tabasi, M. Mohebbi, Journal of Food Measurement and Characterization, 9 (2015) 110-119.
[27] D. Sadat Mousavian, R. Niazmand, P. Sharayei, (2018).
[28] L. Ahrné, C.-G. Andersson, P. Floberg, J. Rosén, H. Lingnert, LWT-Food Science and Technology, 40 (2007) 1708-1715.
[29] B. Sahraiyan, F. Naghipour, M. Karimi, M.G. Davoodi, Food Hydrocolloids, 30 (2013) 698-703.