اثرات پس از برداشت اسیدسالیسیلیک و کیتوسان در بهبود ماندگاری گیلاس رقم « بادا»

نویسندگان
1 مرکز تحققات و آموزش کشاورزی و منابع طبیعی استان کرمان، سازمان تحقیقات،آموزش و ترویج کشاورزی
2 موسسه آموزشی شف طب حیان
3 موسسه آموزشی شفا طب حیان
چکیده
یافتن ترکیبات بیولوژیکی غیرشیمیایی (ارگانیک) مانند اسید­سالیسیلیک و کیتوسان که برای مصرف کننده بی ضرر بوده و در عین حال به حفظ خواص نگهداری محصولات میوه فاسد شدنی کمک نماید، مورد توجه است. بنابراین، اثرات اسید سالیسیلیک (SA) (صفر، یک و 2 میلی­مول­در لیتر) بر ماندگاری و کیفیت میوه گیلاس "بادا" در طول نگهداری بررسی شد. فنول کل (TP)، فعالیت آنتی اکسیدانی کل (TAA)، محتوای اسیدآسکوربیک (AAC) و بروز پوسیدگی قارچی (FDI)، اسیدیته قابل تیتراسیون کل (TTA)، (pH) و سفتی و سطح رنگ در طول نگهداری برای 14 و 28 روز در دمای 5/0 ± 5 /2 درجه سانتی­گراد و رطوبت نسبی 85 تا 95 درصد بررسی گردید. اسید­سالیسیلیک در تمام غلظت­ها به­طور قابل توجهی بر کیفیت میوه تاثیر گذاشت. اسید­سالیسیلیک در یک میلی­مول­در­لیتر در ترکیب با کیتوسان 1 درصد به­طور قابل توجهی باعث کاهش بروز FDI و حفظ بازارپسندی و سفتی میوه شد. شاخص های رنگ L* و b* به­طور معنی­داری افزایش یافت و اسیدسالیسیلیک یک میلی­مول­در لیتر میزان رنگ پوست مایل به زرد و رنگ روشن تر را تحریک نمود. از نتایج این تحقیق می­توان برای مصارف مختلف گیلاس اعم از مصرف تازه­خوری یا فرآوری شده استفاده نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Postharvest salicylic acid and chitosan Effects to the improved shelf life of ‘Bada’ sweet cherry

نویسندگان English

Javad Farrokhi Toolir 1
Farhad Asghari 2
Asadollah Asghari 3
1 Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
2 Technical and Vocational Training School of Shafa-Tebe Hayan, Maragheh, Iran. (ID-code: 23812)
3 Technical and Vocational Training School of Shafa-Tebe Hayan, Maragheh, Iran. (ID-code: 23812)
چکیده English

Finding non-chemical (organic) biological compounds such as salicylic acid and chitosan, which are harmless to the consumer and at the same time help to maintain the storage properties of perishable fruit crops, is of interest. Therefore, the effects of salicylic acid (SA) (0, 1, and 2 mmol L-1) on the shelf life and quality of ‘Bada’ cherry fruit during storage were surveyed. Total phenolics (TP), total antioxidant activity (TAA), ascorbic acid content (AAC) and fungal decay incidence (FDI), total titrable acidity (TTA), pH, firmness, and the color surface were evaluated during storage for 14 and 28 days at 2.5±0.5 °C and relative humidity of 85-95 %. SA at all concentrations significantly affected the fruit quality. SA at one mmol L‑1 in combination with 1% chitosan significantly decreased FDI incidence and maintained fruit marketability and firmness. L* and b* color indices significantly increased, and one mmol L‑1 SA induced the rate of yellowish skin color and lighter color. The results of this study can be used for various uses of fresh or processed cherries.

کلیدواژه‌ها English

Ascorbic acid
Fruit firmness
phenol
Surface color
Sweet cherry
[1] Tokatlı, K., & Demirdöven, A. 2021. Influences of chitosan coatings on functional compounds of sweet cherries. Journal of Food Science and Technology, 58 (5): 1808–1818.

[2] FAOSTAT, 2022. Food and agricultural organization of the United Nations. Production crops. At: http:// faostat. fao. Org /site /567 /Desktop Default. Aspx Page ID=567.
[3] Ahmadi, K., Ebadzaddeh, H.R., Hatami, F., Hosseinpour, R., & Abdeshah, H. 2020. Statistics of horticultural crops. Deputy Minister of planning and economic affairs of the ministry of Jihad agriculture Iran, pp 152- 157 [In Persian].
[4] Ganji Moghadam, E., Bouzari, N., Kavand, E.A., Irvani, A., Akhavan, S.H., Bina, S., & Gouharkhay, S.H. 2017. Adli, a new variety of precocious cherries with the desired size and quality. Journal Research Findings in Crops and Horticulture, 6 (2): 123-132.
[5] Ganji Moghadam, E., Bouzari, N., & Zamanpour, M. 2020. Evaluation of “Zoshk”: A new mid-ripening sweet cherry cultivar with suitable fruit size and quality. Iranian Agriculture Research, 40 (2): 95-101.
[6] Chockchaisawasdee, S., Golding, J.B., Vuong, Q.V., Papoutsis, K., & Stathopoulos, C.E. 2016. Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends Food Science and Technology, 55: 72–83.

[7] Esmaeili, A., Jafari, A., Ghasemi, A, & Gholamnejad J. 2022. Improving postharvest quality of sweet cherry fruit by using tragacanth and eremurus. International Journal of Fruit Science, 22 (1): 370–382.
[8] Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M. & Akhtar, N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109: 1095–1107.
[9] Xu, X.B., & Tian, S.P. 2008. Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biology and Technology, 49: 379–385.
[10] Valero, D., Diaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillen, F., Martinez-Romero, D., & Serrano, M. 2011. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 59 (10): 5483–5489.
[11] Pasquariello, M.S., Patre, D., Mastrobuoni, F., Zampella, L., Scortichini, M., & Petriccione, M. 2015. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest Biology and Technology, 109: 45–56.
[12] Petriccione, M., De Sanctis, F., Pasquariello, M.S., Mastrobuoni, F., Rega, P., Scortichini, M., & Mencarelli, F. 2015. The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food and Bioprocess Technology, 8 (2): 394–408.
[13] Hernandez-Munoz, P., Almenar, E., Del-Valle, V., Velez, D., & Gavara, R. 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chemistry, 110: 428–435.
[14] Babalar, M., Asghari, M.R., Talaei, A., & Khosroshahi, A. 2007. Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistery, 105: 449–453.
[15] Tefera, A., Seyoum, T., & Woldetsadik, K. 2007. Effect of disinfection, packaging and storage environment on the shelf life on mango. The journal Bioprocess and Biosystems Engineering, 97: 201–212.
[16] Singleton, V.L., & Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. The American Journal of Enology and Viticulture, 16: 144-158.
[17] Benzie, I.F., & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Analytical Biochemistery, 239: 70–76.
[18] Zheng, X., Tian, S., Meng, X., & Li, B. 2007. Physiological and biochemical response in peach fruit to oxalic acid treatment during storage at room temperature. Food Chemistery, 104: 156–162.
[19] Lanauskas, J., Kviklys, D., Uselis, N., & Stanys, V. 2023. Performance of sweet cherry cultivars and advanced selections on Gisela 5 rootstock in young orchards. Plants, 12 (3): 614 -624.
[20] Asghari, M.R., & Soleimani Aghdam, M. 2010. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends Food Science and Technology, 10: 502–509.
[21] Pila, N., Neeta, B., & Ramana Rao, T.V. 2010. Effect of Post-harvest Treatments on Physicochemical Characteristics and Shelf Life of Tomato (Lycopersicon esculentum Mill.) Fruits during Storage. American-Eurasian Journal of Agriculture and Environmental Science, 9 (5): 470-479.
[22] Asghari, M. 2021. Salicylic acid and chitosan retained strawberry fruit quality and phytochemical contents and decreased decay extension during cold storage. Acta Horticulturae, 1325: 363-370.
[23] Aziz, T., Hassan, K., Talukder, F.U., & Sohanur, S. 2021. Effects of different concentrations of chitosan on shelf life and quality of banana fruit. International Journal Horticulture Science and Technology, 8 (1): 1-12.

[24] Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R.H. 2013. Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of food and Agriculture, 93 (2): 368–374.
[25] Ribeiro, C., Vicente, A.A., Teixeira, J.A., & Miranda, C. 2007. Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44: 63-70.
[26] Gong, Y., Fan, X., & Mattheis, J.P. 2002. Response of ‘Bing’ and ‘Rainier’ sweet cherries to ethylene and 1- methylclopropen. American Society for Horticultural Science, 127 (5): 831-835.
[27] Chen, L., Zhou, F., Chen, Y., Fan, Y., Zhang, K., Liu, Q., Tu, W., Jiang, F., Li, G., Zhao, H., & Song, B. 2023. Salicylic acid improves the constitutive freezing tolerance of potato as revealed by transcriptomics and metabolomics analyses. International Journal of Molecular Science, 24 (1): 609 -629.
[28] Srivastava, M.K., & Dwivedi, U.N. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Science 158: 87-96.
[29] Zhang, Y., Chen, K., Zhang, S., & Ferguson, I. 2003. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28: 67–74.
[30] Zhu, S.H., Liu, M.C., & Zhou, J. 2006. Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology, 42: 41–48.
[31] Martinez-Romero, D., Alburquerque, N., Valverde, J.M., Guillen, F., Castillo, S., Valero, D., & Serrano, M. 2006. Postharvest sweet cherry quality and safety maintenance by Aloe Vera treatment: A new edible coating. Postharvest Biology and Technology, 39: 93–100.
[32] Li, H., & Yu, T. 2000. Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit. Journal of the Science of Food and Agriculture, 81: 269–274.
[33] Bautista-Banos, S., Hernandez-Lopez, M., Bosquez-Molina, E., & Wilson, C.L. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection, 22: 1087–1092.
[34] Mo, Y., Gong, D., Liang, G., Han, R., Xie, J., & Li, W. 2008. Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post-harvest storage. Journal of the Science of Food and Agriculture, 88: 2693–2699.
[35] Fattahi, J., Fifall, R., & Babri, M. 2010. Postharvest quality of kiwifruit (Actinidia deliciosa cv. Hayward) affected by pre-storage of salicylic acid. Southwestern Journal of Horticulture, Biology and Environment, 1: 175-186.
[36] Angrej, A., Khalid Rasool, K.H., Ganai, N.A., & Wani H. 2022. Pre and post-harvest salicylic acid application improves plant growth, fruit quality and storability of pear- a review. International Journal of Environment and Climate Change, 12 (1): 91-97.
[37] Olivas, G.I., & Barbosa-Canovas, G.V. 2005. Edible coatings for fresh-cut fruits. Food Science and Nutrition, 45: 657–670.
[38] Asghari, M. 2006. Effects of salicylic acid on Selva strawberry fruit, antioxidant activity, ethylene production and senescence, fungal contamination and some other quality attributes. Ph.D. thesis, University of Tehran, Iran. pp 1-100 [In Persian].
[39] Rohi, Z. 2008. Effect of salicylic acid and putricine on some quality attributed of Hiyward kiwifruit. A thesis submitted for the MS degree in pomology. Faculty of Agriculture, Urmia University, pp 1-110 [In Persian].
[40] Yao, H., & Tian, S. 2005. Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 35: 253–262.
[41] Lin,Y., Sun, X., Yuan, Q., & Yan, Y. 2014. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metabolic Engineering, 23: 62-69.