نانوکپسوله‌سازی آستاگزانتین از هماتوکوکوس پلویالیس با استفاده از پوشش مالتودکسترین-کازئینات سدیم و ارزیابی فعالیت آنتی‌اکسیدانی و ضد باکتریایی نانوکپسول‌های حامل

نویسندگان
1 دانش آموخته دکتری، گروه فرآوری فرآورده های شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 استاد گروه شیلات، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
چکیده
هدف از پژوهش حاضر در مرحله اول استخراج آستاگزانتین از هماتوکوکوس پلویالیس به روش اسید-استون و سپس نانوکپسوله کردن رنگدانه با استفاده از پوشش مالتودکسترین- کازئینات سدیم بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Nanoencapsulation of astaxanthin from Haematococcus pluvialis using maltodextrin-sodium caseinate coating and evaluation of antioxidant and antibacterial activities of the carrier nanocapsules

نویسندگان English

Soheyl Reyhani Poul 1
Sakineh Yeganeh 2
1 PhD graduate, Department of Processing of Fishery Products, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Professor, Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده English

The aim of present research in the first stage was to extract astaxanthin from Haematococcus pluvialis using acid-acetone method and then nanoencapsulation of the pigment using maltodextrin-sodium caseinate coating. In the next step, antioxidant and antibacterial activities of nanocapsules carrying astaxanthin and the free form of the pigment was evaluated. In order to evaluate antibacterial activity of the samples, Listeria monocytogenes, Staphylococcus aureus, Streptococcus iniae, Bacillus subtilis (Gram positive), Yersinia ruckeri, Escherichia coli and Enterobacter aerogenes (Gram negative) were used. The results showed that the antioxidant activity of nanocapsules carrying astaxanthin is significantly higher than the free form of pigment (p<0.05); In addition, this activity was improved by increasing the concentration of samples from 100 to 200 µg/ml (p<0.05). By astaxanthin nanoencapsulation, the diameter of non-growth zone of the studied bacteria increased (p<0.05), but minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the pigment and its carrier nanocapsules decreased (p<0.05). According to the results of zone of inhibition, Gram positive (except Listeria monocytogenes) and Gram negative bacteria were resistant up to concentrations of 60 and 80 µg/ml of samples, respectively. In the following, the MIC and MBC of the pigment (free and nanoencapsulated forms) for the seven bacteria ranged from 50 to 400 and 100 to 500 µg/ml, respectively. The results of evaluation the antioxidant and antibacterial activities of nanocapsules carrying astaxanthin during storage period (30 days at 4ºC) indicated stability and no significant change of these properties (p>0.05). According to the values of diameter of non-growth zone, MIC and MBC, Listeria monocytogenes was the most sensitive bacteria against astaxanthin and its carrier nanocapsules. Based on the findings, astaxanthin extracted from Haematococcus pluvialis has antioxidant and antibacterial activities, and these properties are improved by the pigment nanoencapsulation using maltodextrin-sodium caseinate coating.

کلیدواژه‌ها English

Haematococcus pluvialis
astaxanthin
Carrier nanocapsules
Maltodextrin
Antioxidant activity
Antibacterial Property
[1] Reyhani Poul, S. and Jafarpour, A., 2020. Effect of edible active film of chitosan containing fish protein hydrolysate (FPH) on chemical and microbial properties of rainbow trout (Oncorhynchus mykiss) fillets during the refrigerated storage. Iranian Food Science and Technology Research Journal, 16 (4), 493-505.
[2] Safari, R., Mirbakhsh, M., Ghaffari, H., Reyhani Poul, S., Rahmati, R. and Ebrahimzadeh, M., 2022a. Effect of temperature, pH, and time factors on the stability and antioxidant activity of the extracted astaxanthin from haematococcus microalgae (Haematococcus pluvialis). Iranian Scientific Fisheries Journal, 31 (1), 109-120 (In Persian). http://dorl.net/dor/20.1001.1.10261354.1401.31.1.10.2
[3] Safari, R., Raftani Amiri, Z., Reyhani Poul, S. and Esmaeilzadeh Kenari, R., 2022b. Evaluation and comparison of antioxidant and antibacterial activity of phycocyanin extracted from spirulina microalgae (Spirulina Platensis) in both pure and nanoencasulated forms with maltodextrin-sodium caseinate combination coating. Iranian Journal of Food Science and Technology, 127 (19), 345-358 (In Persian). http://dx.doi.org/10.22034/FSCT.19.127.345
[4] Suzery, M., Majid, D., Setyawan, D. and Sutanto, H., 2017. Improvement of stability and antioxidant activities by using phycocyanin-chitosan encapsulation technique. In IOP Conference Series: Earth and Environmental Science (Vol. 55, No. 1, p. 012052). IOP Publishing.
[5] Dong, S., Huang, Y., Zhang, R., Wang, S. and Liu, Y., 2014. Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. The Scientific World Journal, 2014.
[6] Safari, R., Raftani Amiri, Z., Reyhani Poul, S. and Ghaffari, H., 2022c. Nanoencapsulation of phycocyanin extracted from the alga Spirulina (Spirulina platensis) and use of resulting nanoparticles in ice cream formulation. Iranian Journal of Food Science and Technology, 123 (19), 145-159 (In Persian). http://dx.doi.org/10.52547/fsct.19.123.145
[7] Gu, Z., Deming, C., Yongbin, H., Zhigang, C. and Feirong, G. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Science and Technology, 41(6), 1082-1088. https://doi.org/10.1016/j.lwt.2007.07.005
[8] Kang, C. D. and Sim, S. J., 2008. Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnology Letters, 30(3), 441-444. https://doi.org/10.1007/s10529-007-9578-0
[9] Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M. and Hirose, T., 2006. Extraction of astaxanthin from Haematococcus p luvialis using supercritical CO2 and ethanol as entrainer. Industrial & engineering chemistry research, 45(10), 3652-3657.
[10] Zhou, T., Wang, X., Ju, Y., Shi, C. and Kan, G., 2018. Stability application and research of astaxanthin integrated into food. In IOP Conference Series: Materials Science and Engineering (Vol. 394, No. 2, p. 022007). IOP Publishing.
[11] Yuan, J. P., Peng, J., Yin, K. and Wang, J. H., 2011. Potential health‐promoting effects of astaxanthin: A high‐value carotenoid mostly from microalgae. Molecular Nutrition & Food Research, 55(1), 150-165. http://dx.doi.org/10.1002/mnfr.201000414
[12] Guerin, M., Huntley, M. E. and Olaizola, M., 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5), 210-216. https://doi.org/10.1016/s0167-7799 (03)00078-7
[13] Miki, W. (1991). Biological functions and activities of animal carotenoids. Pure and applied chemistry, 63(1), 141-146. https://doi.org/10.1351/pac199163010141
[14] Tan, Y., Ye, Z., Wang, M., Manzoor, M. F., Aadil, R. M., Tan, X. and Liu, Z., 2021. Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: Chemical composition and biological activity. Molecules, 26(12), 1-14. https://doi.org/10.3390/molecules26123569
[15] Suganya, V. and Asheeba, S., 2015. Antioxidant and antimicrobial activity of astaxanthin isolated from three varieties of crabs. International Journal of Recent Scientific Research, 6(10), 6753-6758.
[16] Irna, C., Jaswir, I., Othman, R. and Jimat, D., 2017. Antioxidant and antimicrobial activities of astaxanthin from Penaeus monodonin comparison between chemical extraction and High Pressure Processing (HPP). International Food Research Journal, 24, 508-513.
[17] Zhang, L. and Wang, H., 2015. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Marine drugs, 13(7), 4310-4330. https://doi.org/10.3390/md13074310
[18] Chang, M. X. and Xiong, F., 2020. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions. Molecules, 25(22), 1-14. https://doi.org/10.3390/molecules25225342
[19] Zhuge, F., Ni, Y., Wan, C., Liu, F. and Fu, Z., 2021. Anti-diabetic effects of astaxanthin on an STZ-induced diabetic model in rats. Endocrine Journal, 68(4), 451-459. https://doi.org/10.1507/endocrj.EJ20-0699
[20] Cao, Y., Yang, L., Qiao, X., Xue, C. and Xu, J., 2021. Dietary astaxanthin: An excellent carotenoid with multiple health benefits. Critical Reviews in Food Science and Nutrition, 1-27. https://doi.org/10.1080/10408398.2021.1983766
[21] Fassett, R. G. and Coombes, J. S., 2011. Astaxanthin: a potential therapeutic agent in cardiovascular disease. Marine drugs, 9(3), 447-465. https://doi.org/10.3390/md9030447
[22] Mezquita, P. C., Huerta, B. E. B., Ramírez, J. C. P., and Hinojosa, C. P. O., 2015. Milks pigmentation with astaxanthin and determination of colour stability during short period cold storage. Journal of Food Science and Technology, 52(3), 1634-1641. https://doi.org/10.1007/s13197-013-1179-4
[23] Reyhani Poul, S. and Yeganeh, S., 2022. Physicochemical and antioxidant properties of chitosan-coated nanoliposome loaded with bioactive peptides produced from shrimp wastes hydrolysis. Iranian Journal of Fisheries Sciences, 21(4), 987-1003. https://dx.doi.org/10.22092/ijfs.2022.126498
[24] Yan, M., Liu, B., Jiao, X. and Qin, S., 2014. Preparation of phycocyanin microcapsules and its properties. Food and Bioproducts Processing, 92(1), 89-97. https://doi.org/10.1016/j.fbp.2013.07.008
[25] Machado, A. R., Assis, L. M., Costa, J. A. V., Badiale-Furlong, E., Motta, A. S., Micheletto, Y. M. S. and Souza-Soares, L. A., 2014. Application of sonication and mixing for nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. International Food Research Journal, 21(6), 2201-2206.
[26] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S. and Bugarski, B., 2011. An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815. https://doi.org/10.1016/j.profoo.2011.09.265
[27] Liu, Z. W., Zeng, X. A., Cheng, J. H., Liu, D. B. and Aadil, R. M., 2018. The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis. International Journal of Food Science & Technology, 53(9), 2212-2219. https://doi.org/10.1111/ijfs.13810
[28] Dewati, P. R., Rohman, A. and Budiman, A., 2020. A Preliminary Study of Extraction and Purification Processes of Astaxanthin from Haematococcus pluvialisas a Natural Antioxidant. In IOP Conference Series: Materials Science and Engineering (Vol. 778, No. 1, p. 012032). IOP Publishing.
[29] Sun, W., Lin, H., Zhai, Y., Cao, L., Leng, K. and Xing, L., 2015. Separation, Purification, and Identification of (3S, 3′ S) - trans-Astaxanthin from Haematococcus pluvialis. Separation Science and Technology, 50(9), 1377-1383. https://doi.org/10.1080/01496395.2014.976873
[30] Hasani, Sh., Shahidi, M. and Ojagh. M., 2018. The production and evaluation of nanoliposomes containing bioactive peptides derived from fish wastes using the alkalase enzyme. Research and Innovation in Food Science and Industry, 8 (1), 31-44 (In Persian).
[31] Alemán, A., Pérez-Santín, E., Bordenave-Juchereau, S., Arnaudin, I., Gómez-Guillén, M. C. and Montero, P., 2011. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International, 44(4), 1044-1051. https://doi.org/10.1016/j.foodres.2011.03.010
[32] Kim, J. W. and Minamikawa, T., 1997. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Bioscience, Biotechnology and Biochemistry, 61(1), 118-123. https://doi.org/10.1271/bbb.61.118
[33] Sarada, R. M. G. P., Pillai, M. G. and Ravishankar, G. A., 1999. Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34(8), 795-801. https://doi.org/10.1016/S0032-9592 (98)00153-8
[34] Sitohy, M., Osman, A., Ghany, A. G. A. and Salama, A., 2015. Antibacterial phycocyanin from Anabaena oryzae SOS13. International Journal of Applied Research in Natural Products, 8(4), 27-36.
[35] Dewi, E. N., Purnamayati, L. and Kurniasih, R. A., 2016. Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Jurnal Teknologi, 78(4-2), 45-50. https://doi.org/10.11113/jt.v78.8151
[36] Abdelmalek, B. E., Sila, A., Ghlissi, Z., Taktak, M. A., Ayadi, M. A. and Bougatef, A., 2016. The influence of natural astaxanthin on the formulation and storage of marinated chicken steaks. Journal of Food Biochemistry, 40(4), 393-403. https://doi.org/10.1111/jfbc.12224
[37] Weintraub, S., Shpigel, T., Harris, L. G., Schuster, R., Lewis, E. C. and Lewitus, D. Y., 2017. Astaxanthin-based polymers as new antimicrobial compounds. Polymer Chemistry, 8(29), 4182-4189. https://doi.org/10.1039/C7PY00663B
[38] Rather, A. H., Singh, S., and Choudhary, S., 2021. Antibacterial activity of Haematococcus pluvialis crude astaxanthin extract. Journal of Drug Delivery and Therapeutics, 11(2), 28-30. https://doi.org/10.22270/jddt.v11i2-S.4662
[39] Mohammadpourfard, I., Khanjari, A., Akhonzadeh Basti, A., Herrero‐Latorre, C., Shariatifar, N. and Hosseini, H., 2021. Evaluation of microbiological, chemical, and sensory properties of cooked probiotic sausages containing different concentrations of astaxanthin, thymol, and nitrite. Food Science & Nutrition, 9(1), 345-356. https://doi.org/10.1002/fsn3.2000
[40] Parvathy, S., Subramanian, P., Karthick, S. A. and Subbaiya, R., 2022. The structural, optical, antimicrobial and anticancer properties of biocompatible astaxanthin coated ZnO and CeO2 nanoparticles. Materials Letters, 312 (2), 131669. https://doi.org/10.1016/j.matlet.2022.131669
[41] Ahmed, E. A., Mohamed, H. E. and Abd El-Salam, H. S., 2022. In vitro antimicrobial activity of astaxanthin crude extract from Haematococcus pluvialis. Egyptian Journal of Aquatic Biology, 26, 95-106. https://dx.doi.org/10.21608/ejabf.2022.224854
[42] Muthulakshmi, M., Saranya, A., Sudha, M. and Selvakumar, G., 2012. Extraction, partial purification, and antibacterial activity of phycocyanin from Spirulina isolated from fresh water body against various human pathogens. Journal of Algal Biomass Utilization, 3(3), 7-11.
[43] Mohite, Y. S., Shrivastava, N. D., and Sahu, D. G., 2015. Antimicrobial activity of C-phycocyanin from Arthrospira platensis isolated from extreme haloalkaline environment of Lonar Lake. Journal of Environmental Science, Toxicology and Food Technology, 1(4), 40-45.