ارزیابی خواص کیفی ریزپوشینه‌های تفاله انگور و روغن بزرک پایدار شده با نسبت‌های مختلف مالتودکسترین و صمغ کتیرا

نویسندگان
دانشگاه علوم پزشکی آزاد اسلامی تهران
چکیده
ریزپوشانی فرایندی جهت محافظت از ترکیبات زیست فعال در برابر شرایط نامساعد محیطی به منظور افزایش پایداری و دسترسی زیستی آن­ها می باشد. با توجه به حضور ترکیبات زیست فعال در تفاله انگور و روغن بزرک، هدف از این پژوهش درون پوشانی روغن بزرک و تفاله انگور سیاه سردشت با نسبت­های مختلف مالتودکسترین و صمغ کتیرا (1:1، 2:1 و 1:2) با استفاده از خشک­کن پاششی و بررسی ویژگی­های کیفی ریزپوشینه­های تولید شده بود. بر این اساس، ریزپوشینه­های تولیدی از لحاظ بازده ریزپوشینه، میزان حلالیت و رطوبت، محتوای ترکیبات فنولی، فعالیت آنتی اکسیدانی، برهم کنش مواد دیواره و هسته و ریزساختار مورد ارزیابی قرار گرفتند. مطابق با نتایج، از لحاظ محتوای رطوبت و میزان حلالیت تفاوت معنی­داری بین ریزپوشینه­ها وجود نداشت. بالاترین بازده ریزپوشانی، بیشترین محتوای ترکیبات فنولی کل و بیشترین ظرفیت مهار رادیکال DPPH در ریزپوشینه­­ی دارای نسبت 1:1 مالتودکسترین و صمغ کتیرا مشاهده شد. در حالیکه شکل کروی ریزپوشینه­ها برای تمامی نمونه­ها به وسیله میکروسکوپ الکترونی روبشی مشاهده شد، ریزپوشینه های دارای دیواره مالتودکسترین و صمغ کتیرا با نسبت 1:1 ساختار فشرده­تر و یکنواخت­تری داشتند. آنالیز FT-IR نیز شکل­گیری برهمکنش­های جدید بین مواد دیواره و هسته ریزپوشینه­ها را تایید کرد. نتایج این پژوهش نشان داد که استفاده از مالتودکسترین و صمغ کتیرا به عنوان ماده دیواره با نسبت 1:1، کارآیی مناسبی جهت ریزپوشانی تفاله انگور و روغن بزرک دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the quality properties of grape pomace and flaxseed oil microcapsules stabilized with different ratios of maltodextrin and gum tragacanth

نویسندگان English

Manaf Saberi
Solmaz Saremnezhad
Mostafa Soltani
Alireza Faraji
Tehran Medical Sciences, Islamic Azad University
چکیده English

Encapsulation is a process to protect bioactive compounds against unfavorable environmental conditions in order to increase their stability and bioavailability. Regarding the existence of bioactive compounds in grape pomace and flaxseed oil, the aim of this research was to encapsulation of grape pomace (Vitis viniferae cv. Rash (and flaxseed oil with different ratios of maltodextrin and gum tragacanth (1:1, 1:2, 2:1) using a spray drier and evaluation of the quality properties of obtained microcapsules. The produced microcapsules were analyzed in terms of microcapsulation yield, solubility and humidity contents, total phenolic contents, antioxidant activity, the interaction between wall and core materials and microstructure. According to the results, there were no significant differences between the microcapsules in terms of humidity and solubility contents (P<0.05). The highest microencapsulation yield, total phenolic contents and antioxidant activity were observed in the microcapsules produced with equal ratios (1:1) of maltodextrin and gum tragacanth. While the spherical shape was observed by scanning electron microscope for all of microcapsule samples, the microcapsules produced with equal ratios (1:1) of maltodextrin and gum tragacanth had a more compact and homogeneous structure. FT-IR analysis also confirmed the creation of new interactions between the wall and core materials of the obtained microcapsules. The results of the present research showed that using maltodextrin and gum tragacanth as wall material in an equal ratio (1:1) had a proper performance in order to microencapsulation of grape pomace and flaxseed oil.

کلیدواژه‌ها English

Microcapsulation
Grape pomace
Flaxseed oil
Maltodextrin
Gum tragacanth
[1] Simopoulos, A. P., & De Meester, F. (Eds.). (2009). A balanced omega-6/omega-3 fatty acid ratio, cholesterol and coronary heart disease. Karger Medical and Scientific Publishers.
[2] Alongi, M., & Anese, M. (2021). Re-thinking functional food development through a holistic approach. Journal of Functional Foods, 81, 104466.
[3] Ziani, K., Fang, Y., & McClements, D. J. (2012). Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food chemistry, 134(2), 1106-1112.
[4] Abdel-Wahed, M. S., Hameed, L. A., & Salamjwar, A. (2022). Effect of glutathione and ascorbic acid on some physical characteristics of seedlings of grape plant Halawani cultivar Vitis vinifera L. University of Thi-Qar Journal of Agricultural Research, 11(2), 122-130.
[5] Jalili Marandi, R. (2003). Small fruits. first edition, Academic Jihad of Urmia
[6] Aspé, E., & Fernández, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Industrial Crops and Products, 34(1), 838-844.
[7] Pourali, A., Afrouziyeh, M., & Moghaddaszadeh-ahrabi, S. (2014). Extraction of phenolic compounds and quantification of the total phenol of grape pomace. Eur J Exp Biol, 4, 174-176.
[8] Zuk, M., Richter, D., Matuła, J., & Szopa, J. (2015). Linseed, the multipurpose plant. Industrial Crops and Products, 75, 165-177.
[9] Maherani, B., Barzegar, M., Sahari, M., & Dehghani, H. (2004). Optimizing the extraction conditions of Iranian linseed gum by the answer page method. Agricultural Sciences and Techniques and Natural Resources, 8(4).
[10] Mueller, K., Eisner, P., Yoshie-Stark, Y., Nakada, R., & Kirchhoff, E. (2010). Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.). Journal of Food Engineering, 98(4), 453-460.
[11] Padley, F. B., Gunstone, F. D., & Harwood, J. L. (2012). Occurrence and characteristics of oils and fats. Vol. III. The Lipid Handbook with CD-ROM. Gunstone FD, Harwood JL, Dijkstra AJ (eds). CRC Press, Inc., Boca Raton, FL, USA, 37-158.
[12] Fried, R., & Carlton, R. (2022). Flaxseed: Evidence-based Cardiovascular and other Medicinal Benefits. CRC Press.
[13] Jacobsen, C. (2010). Enrichment of foods with omega‐3 fatty acids: a multidisciplinary challenge. Annals of the New York Academy of Sciences, 1190(1), 141-150.
[14] Ottaway, P. B. (Ed.). (2008). Food fortification and supplementation: Technological, Safety and Regulatory Aspects. Elsevier.
[15] Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. Encapsulation Technologies for Active Food Ingredients and Food Processing, 3-29.
[16] Hesarinejad, M. A., Abdollahi Moghaddam, M. R., Jafarzadeh, M., & Rezaee Oghazi, M. (2021). The study of physicochemical and antioxidant properties of encapsulated Portulaca oleracea aqueous extract prepared by spray drying method. Innovative Food Technologies,8 (3), 325-335.
[17] Akbarlou, S., Alizadeh Khaled Abad, M., Pirsa, S., & Mohtarami, F. (2019). Encapsulation of pomegranate seed oil by various carriers and determine its physicochemical characteristics. JFST, 85(15), 305-316.
[18] Miller, D. A., Ellenberger, D., Porfirio, T., & Gil, M. (2022). Spray-drying technology. In Formulating Poorly Water Soluble Drugs (pp. 377-452). Cham: Springer International Publishing.
[19] Halahlah, A., Piironen, V., Mikkonen, K. S., & Ho, T. M. (2022). Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Critical Reviews in Food Science and Nutrition, 1-33.
[20] Zolfaghari, N., & Sheikholeslami, Z. (2022). Production of functional low-sugar muffin containing maltodextrin and ghavoot. Journal of Food Science and Technology (Iran), 18(121), 275-288.
[21] Li, X., Zhang, Z. H., Qiao, J., Qu, W., Wang, M. S., Gao, X. & Qi, X. (2022). Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. Ultrasonics Sonochemistry, 82, 105897.
[22] Esmaeili, F., Hashemiravan, M., Eshaghi, M. R., & Gandomi, H. (2022). Encapsulation of Arctium lappa L. root extracts by spray-drying and freeze-drying using maltodextrin and Gum Arabic as coating agents and it’s application in synbiotic orange-carrot juice. Journal of Food Measurement and Characterization, 16(4), 2908-2921. [23] Goula, A. M., & Adamopoulos, K. G. (2012). A new technique for spray-dried encapsulation of lycopene. Drying Technology, 30(6), 641-652.
[24] Sohrabi, Y., & Kiani, H. (2022). Effect of Tragacanth on some Morpho-physiological Characteristics related to Black Cumin (Nigella sativa L.) Yield under Drought Stress Conditions. Journal of Horticultural Science, 35(4), 631-645.
[25] Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337.
[26] Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379-385.
[27] Farrag, A., El-Messery, T. M., El-Said, M. M., Soliman, T. N., & El-Din, H. M. F. (2018). Microencapsulation of grape phenolic compounds using whey proteins as a carrier vehicle. Journal of Biological Sciences, 18(7), 373-380.
[28] Lavelli, V., & Harsha, P. S. (2019). Microencapsulation of grape skin phenolics for pH controlled release of antiglycation agents. Food Research International, 119, 822-828.
[29] Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379-385.
[30] Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, 52(2), 473-482.
[31] Rockenbach, I. I., Gonzaga, L. V., Rizelio, V. M., Gonçalves, A. E. D. S. S., Genovese, M. I., & Fett, R. (2011). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research International, 44(4), 897-901.
[32] Glauser, G., Grund, B., Gassner, A. L., Menin, L., Henry, H., Bromirski, M., ... & Rochat, B. (2016). Validation of the mass-extraction-window for quantitative methods using liquid chromatography high resolution mass spectrometry. Analytical Chemistry, 88(6), 3264-3271.
[33] Rockenbach, I. I., Gonzaga, L. V., Rizelio, V. M., Gonçalves, A. E. D. S. S., Genovese, M. I., & Fett, R. (2011). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Research International, 44(4), 897-901.
[34] Demirkol, M., & Tarakci, Z. (2018). Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT, 97, 770-777.
[35] Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23-33.
[36] Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51(2), 866-871.
[37] Ayo, J. A., Ojo, M., & Obike, J. (2018). Proximate composition, functional and phytochemical properties of pre-heated aerial yam flour. Res. J. Food Sci. Nutr, 3, 1-8.
[38] Feng, Z. Z., Li, M. Y., Wang, Y. T., & Zhu, M. J. (2018). Astaxanthin from Phaffia rhodozyma: Microencapsulation with carboxymethyl cellulose sodium and microcrystalline cellulose and effects of microencapsulated astaxanthin on yogurt properties. LWT, 96, 152-160.
[39] Misni, N., Nor, Z. M., & Ahmad, R. (2019). Microencapsulation of Citrus grandis peel oil using interfacial precipitation chemistry technique for repellent application. Iranian Journal of Pharmaceutical Research: IJPR, 18(1), 198.
[40] Lengyel, M., Kállai-Szabó, N., Antal, V., Laki, A. J., & Antal, I. (2019). Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharmaceutica, 87(3), 20.
[41] Cui, W., Wang, Y., Sun, Z., Cui, C., Li, H., Luo, K., & Cheng, A. (2023). Effects of steam explosion on phenolic compounds and dietary fiber of grape pomace. LWT, 173, 114350.
[42] Rodrigues, R. P., Sousa, A. M., Gando-Ferreira, L. M., & Quina, M. J. (2023). Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules, 28(6), 2715.
[43] Burin, V. M., Ferreira-Lima, N. E., Panceri, C. P., & Bordignon-Luiz, M. T. (2014). Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchemical Journal, 114, 155-163.
[44] Matini, S., Mortazavi, S. A., Sadeghian, A. R., & Sharifi, A. (2018). Studying Physicochemical Properties of Sardasht Red Grape Skin Encapsulated Extract and Stability Evaluation of These Compounds in Yoghurt. Research and Innovation in Food Science and Technology, 7(3), 241-254. (In Persian)
[45] Rajabi, H., Ghorbani, M., Jafari, S. M., Mahoonak, A. S., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337.
[46] Mahdavi, S. A., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379-385.
[47] Sharifi, A., Niakousari, M., Maskooki, A., & Mortazavi, S. A. (2015). Effect of spray drying conditions on the physicochemical properties of barberry (Berberis vulgaris) extract powder. International Food Research Journal, 22(6), 2364.
[48] Pękal, A., & Pyrzynska, K. (2015). Effect of pH and metal ions on DPPH radical scavenging activity of tea. International Journal of Food Sciences and Nutrition, 66(1), 58-62.
[49] Kuck, L. S., Wesolowski, J. L., & Noreña, C. P. Z. (2017). Effect of temperature and relative humidity on stability following simulated gastro-intestinal digestion of microcapsules of Bordo grape skin phenolic extract produced with different carrier agents. Food Chemistry, 230, 257-264.
[50] Cruz‐Molina, A. V. D. L., Ayala Zavala, J. F., Bernal Mercado, A. T., Cruz Valenzuela, M. R., González‐Aguilar, G. A., Lizardi‐Mendoza, J., ... & Silva‐Espinoza, B. A. (2021). Maltodextrin encapsulation improves thermal and pH stability of green tea extract catechins. Journal of Food Processing and Preservation, 45(9), e15729.
[51] Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. International Dairy Journal, 11(3), 137-144.
[52] Jinapong, N., Suphantharika, M., & Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194-205.
[53] Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of Agricultural and Food Chemistry, 38(5), 1288-1294.
[54] Ameri, M., & Maa, Y. F. (2006). Spray drying of biopharmaceuticals: stability and process considerations. Drying Technology, 24(6), 763-768.
[55] Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51(2), 866-871.