ارزیابی اثر پوشش خوراکی مبتنی بر موسیلاژ بذر شاهی در ترکیب با اسانس میخک بر افزایش عمر انبارمانی توت‌فرنگی

نویسندگان
1 استادیار، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران
2 استاد، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران
چکیده
توت‌فرنگی میوه‌ای نافرازگرا است، اما سرعت تنفس پس از برداشت بالایی دارد که منجر به فساد سریع آن در دمای اتاق می‌شود. این مطالعه با هدف ارزیابی کاربرد پوشش زیست‌تخریب‌پذیر مبتنی بر موسیلاژ بذر شاهی و اسانس میخک در حفاظت پس از برداشت میوه توت‌فرنگی در دمای 4 درجه سانتی‌گراد صورت گرفت. تیمارهای پوشش‏دهی توت‌فرنگی شامل نمونه کنترل، موسیلاژ بدون اسانس، موسیلاژ حاوی 5/0 درصد اسانس، موسیلاژ حاوی 75/0 درصد اسانس و موسیلاژ حاوی 1 درصد اسانس بودند. ویژگی‌های فیزیکوشیمیایی (مواد جامد محلول، pH، اسیدیته، سفتی)، میکروبی (کپک و مخمر) و حسی (رنگ، بو، بافت و پذیرش کلی) میوه‌ها در روزهای 1، 4، 7 و 10 نگهداری بررسی گردید. تیمارهای حاوی اسانس بر کیفیت پس از برداشت توت‌فرنگی تأثیر مثبت نشان دادند. اگرچه افزایش زمان نگهداری سبب کاهش کیفیت نمونه‌ها شد، اما در مقایسه با نمونه کنترل، پوشش موسیلاژ حاوی 1 درصد اسانس سبب جلوگیری از تغییرات شدید اسیدیته، pH، سفتی، تعداد قارچ‌ها و ویژگی‌های حسی نمونه‌ها طی دوره نگهداری شد و بعنوان بهترین تیمار انتخاب گردید. بطورکلی، نمونه‌های پوشش داده شده با موسیلاژ بذر شاهی حاوی اسانس میخک به دلیل بار میکروبی پایین و حفظ بافت و ترکیبات مولد عطر و طعم، بالاترین پذیرش کلی را نسبت به نمونه کنترل نشان دادند. بنابراین، پوشش خوراکی مبتنی بر موسیلاژ بذر شاهی و اسانس میخک می‌تواند جهت افزایش عمر نگهداری سایر محصولات غذایی استفاده گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the effect of edible coating based on Lepidium sativum seed mucilage in combination with Cinnamomum zeylanicum essential oil on increasing the shelf life of strawberries

نویسندگان English

Mostafa Rahmati 1
Hossein Jooyandeh 2
1 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
2 Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
چکیده English

Strawberry is a non-climacteric fruit, but its high post-harvest respiration rate results in a rapid spoilage at room temperature. The aim of this study was to evaluate the application of biodegradable coating based on Lepidium sativum seed mucilage in combination with Cinnamomum zeylanicum essential oil in post-harvest protection of strawberry fruit at 4 °C. Strawberry coating treatments included control sample, mucilage without essential oil, mucilage containing 0.5% essential oil, mucilage containing 0.75% essential oil, and mucilage containing 1% essential oil. Physicochemical (total soluble solids, pH, acidity, and hardness), microbial (mold and yeast), and sensory (color, odor, texture, and overall acceptance) properties of the fruits were studied on days 1, 4, 7 and 10 of storage. The treatments containing essential oil had a positive effect on post-harvest quality of strawberries. Although the quality of samples decreased by storage time, compared with the control sample, mucilage coating containing 1% essential oil prevented severe changes in acidity, pH, hardness, fungi count, and sensory properties of the samples during the storage period and it was selected as the best treatment. In general, samples coated with L. sativum seed mucilage containing C. zeylanicum essential oil showed the highest overall acceptance compared to the control sample due to low microbial load and preservation of texture and flavor compounds. Therefore, the edible coating based on L. sativum seed mucilage and C. zeylanicum essential oil can be used to increase the shelf life of other food products.

کلیدواژه‌ها English

Strawberry
Bioactive food coating
Sensory characteristics
shelf life
[1] Banaeian, N., Omid, M., & Ahmadi, H. (2011). Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management, 52(2), 1020-1025.
[2] Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9-19.
[3] Nadim, Z., & Ahmadi, E. (2016). Rheological properties of strawberry fruit coating with methylcellulose. Journal of Agricultural Machinery, 6(1), 153-162.
[4] Rahmati-Joneidabad, M., Alizade Behbahani, B., & Noshad, M. (2021). Antifungal effect of Satureja khuzestanica essential oil on Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer causing strawberry’s rot and mold. Food Science and Technology, 18(115), 171-180.
[5] Castelló, M., Fito, P., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of food engineering, 97(1), 64-71.
[6] Harker, F. R., Elgar, H. J., Watkins, C. B., Jackson, P. J., & Hallett, I. C. (2000). Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biology and Technology, 19(2), 139-146.
[7] Norouzi Faz, F., Mirdehghan, S. H., Karimi, H., & Alaei, H. (2016). Eeffect of thymol and menthol essential oils combined with packaging with celofan on the maintenance of postharvest quality of strawberry cv. Parus. Iranian Journal of Horticultural Science, 47(1), 81-91.
[8] Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Science and Technology, 52(2), 71-79.
[9] Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. Food chemistry, 110(2), 428-435.
[10] Barzegar, H., Behbahani, B. A., & Mehrnia, M. A. (2020). Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study. Food Science and Biotechnology, 29(5), 717-728.
[11] Alizadeh Behbahani, B., Noshad, M., & Jooyandeh, H. (2020). Improving oxidative and microbial stability of beef using Shahri Balangu seed mucilage loaded with Cumin essential oil as a bioactive edible coating. Biocatalysis and Agricultural Biotechnology, 24, 101563.
[12] Alizadeh Behbahani, B., Falah, F., Vasiee, A., & Tabatabaee Yazdi, F. (2021). Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food Science & Nutrition, 9(5), 2458-2467.
[13] Fontana, D. C., Neto, D. D., Pretto, M. M., Mariotto, A. B., Caron, B. O., Kulczynski, S. M., & Schmidt, D. (2021). Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338, 108980.
[14] Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pacific journal of tropical biomedicine, 4(2), 90-96.
[15] Abdou, A., Elmakssoudi, A., El Amrani, A., JamalEddine, J., & Dakir, M. (2021). Recent advances in chemical reactivity and biological activities of eugenol derivatives. Medicinal Chemistry Research, 30(5), 1011-1030.
[16] Ulanowska, M., & Olas, B. (2021). Biological Properties and prospects for the application of eugenol—A review. International Journal of Molecular Sciences, 22(7), 3671.
[17] Alizadeh Behbahani, B., Noshad, M., & Falah, F. (2019). STUDY OF CHEMICAL STRUCTURE, ANTIMICROBIAL, CYTOTOXIC AND MECHANISM OF ACTION OF SYZYGIUM AROMATICUM ESSENTIAL OIL ON FOODBORNE PATHOGENS. Potravinarstvo, 13(1), 875-883.
[18] Fan, Y., Xu, Y., Wang, D., Zhang, L., Sun, J., Sun, L., & Zhang, B. (2009). Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria×ananassa) preservation quality. Postharvest Biology and Technology, 53(1), 84-90.
[19] Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage. Foods, 4(4).
[20] Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199-208.
[21] Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164-171.
[22] Alexandre, E. M., Brandão, T. R., & Silva, C. L. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of food engineering, 108(3), 417-426.
[23] Panji, M., Ghajarbeygi, P., Mahmoudi, R., & Shahsavari, S. (2018). Effect of whey protein concentrate edible coating and Trachyspermum copticum essential oil on the microbial, physicochemical and organoleptic characteristics of fresh strawberries during storage. Scientific Journal of Kurdistan University of Medical Sciences, 23(4), 53-66.
[24] Mali, S., & Grossmann, M. V. E. (2003). Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). Journal of agricultural and food chemistry, 51(24), 7005-7011.
[25] Jiang, Y., Yu, L., Hu, Y., Zhu, Z., Zhuang, C., Zhao, Y., & Zhong, Y. (2019). Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. International journal of biological macromolecules, 139, 1232-1238.
[26] Zanganeh, H., Mortazavi, S. A., Shahidi, F., & Alizadeh Behbahani, B. (2021). Evaluation of the chemical and antibacterial properties of Citrus paradise essential oil and its application in Lallemantia iberica seed mucilage edible coating to improve the physicochemical, microbiological and sensory properties of lamb during refrigerated storage. Journal of Food Measurement and Characterization, 15(6), 5556-5571.
[27] Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70.
[28] Peretto, G., Du, W.-X., Avena-Bustillos, R. J., Sarreal, S. B. L., Hua, S. S. T., Sambo, P., & McHugh, T. H. (2014). Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biology and Technology, 89, 11-18.
[29] Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363.
[30] He, Y., Bose, S. K., Wang, W., Jia, X., Lu, H., & Yin, H. (2018). Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International journal of molecular sciences, 19(8), 2194.
[31] Han, C., Lederer, C., McDaniel, M., & Zhao, Y. (2005). Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan‐based edible coatings. Journal of Food Science, 70(3), S172-S178.
[32] Tomadoni, B., Moreira, M. d. R., Pereda, M., & Ponce, A. G. (2018). Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT, 97, 384-389.