[1] Banaeian, N., Omid, M., & Ahmadi, H. (2011). Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management, 52(2), 1020-1025.
[2] Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9-19.
[3] Nadim, Z., & Ahmadi, E. (2016). Rheological properties of strawberry fruit coating with methylcellulose. Journal of Agricultural Machinery, 6(1), 153-162.
[4] Rahmati-Joneidabad, M., Alizade Behbahani, B., & Noshad, M. (2021). Antifungal effect of Satureja khuzestanica essential oil on Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer causing strawberry’s rot and mold. Food Science and Technology, 18(115), 171-180.
[5] Castelló, M., Fito, P., & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of food engineering, 97(1), 64-71.
[6] Harker, F. R., Elgar, H. J., Watkins, C. B., Jackson, P. J., & Hallett, I. C. (2000). Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biology and Technology, 19(2), 139-146.
[7] Norouzi Faz, F., Mirdehghan, S. H., Karimi, H., & Alaei, H. (2016). Eeffect of thymol and menthol essential oils combined with packaging with celofan on the maintenance of postharvest quality of strawberry cv. Parus. Iranian Journal of Horticultural Science, 47(1), 81-91.
[8] Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Science and Technology, 52(2), 71-79.
[9] Hernández-Muñoz, P., Almenar, E., Valle, V. D., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. Food chemistry, 110(2), 428-435.
[10] Barzegar, H., Behbahani, B. A., & Mehrnia, M. A. (2020). Quality retention and shelf life extension of fresh beef using Lepidium sativum seed mucilage-based edible coating containing Heracleum lasiopetalum essential oil: an experimental and modeling study. Food Science and Biotechnology, 29(5), 717-728.
[11] Alizadeh Behbahani, B., Noshad, M., & Jooyandeh, H. (2020). Improving oxidative and microbial stability of beef using Shahri Balangu seed mucilage loaded with Cumin essential oil as a bioactive edible coating. Biocatalysis and Agricultural Biotechnology, 24, 101563.
[12] Alizadeh Behbahani, B., Falah, F., Vasiee, A., & Tabatabaee Yazdi, F. (2021). Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food Science & Nutrition, 9(5), 2458-2467.
[13] Fontana, D. C., Neto, D. D., Pretto, M. M., Mariotto, A. B., Caron, B. O., Kulczynski, S. M., & Schmidt, D. (2021). Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology, 338, 108980.
[14] Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pacific journal of tropical biomedicine, 4(2), 90-96.
[15] Abdou, A., Elmakssoudi, A., El Amrani, A., JamalEddine, J., & Dakir, M. (2021). Recent advances in chemical reactivity and biological activities of eugenol derivatives. Medicinal Chemistry Research, 30(5), 1011-1030.
[16] Ulanowska, M., & Olas, B. (2021). Biological Properties and prospects for the application of eugenol—A review. International Journal of Molecular Sciences, 22(7), 3671.
[17] Alizadeh Behbahani, B., Noshad, M., & Falah, F. (2019). STUDY OF CHEMICAL STRUCTURE, ANTIMICROBIAL, CYTOTOXIC AND MECHANISM OF ACTION OF SYZYGIUM AROMATICUM ESSENTIAL OIL ON FOODBORNE PATHOGENS. Potravinarstvo, 13(1), 875-883.
[18] Fan, Y., Xu, Y., Wang, D., Zhang, L., Sun, J., Sun, L., & Zhang, B. (2009). Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria×ananassa) preservation quality. Postharvest Biology and Technology, 53(1), 84-90.
[19] Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage. Foods, 4(4).
[20] Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199-208.
[21] Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164-171.
[22] Alexandre, E. M., Brandão, T. R., & Silva, C. L. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of food engineering, 108(3), 417-426.
[23] Panji, M., Ghajarbeygi, P., Mahmoudi, R., & Shahsavari, S. (2018). Effect of whey protein concentrate edible coating and Trachyspermum copticum essential oil on the microbial, physicochemical and organoleptic characteristics of fresh strawberries during storage. Scientific Journal of Kurdistan University of Medical Sciences, 23(4), 53-66.
[24] Mali, S., & Grossmann, M. V. E. (2003). Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). Journal of agricultural and food chemistry, 51(24), 7005-7011.
[25] Jiang, Y., Yu, L., Hu, Y., Zhu, Z., Zhuang, C., Zhao, Y., & Zhong, Y. (2019). Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. International journal of biological macromolecules, 139, 1232-1238.
[26] Zanganeh, H., Mortazavi, S. A., Shahidi, F., & Alizadeh Behbahani, B. (2021). Evaluation of the chemical and antibacterial properties of Citrus paradise essential oil and its application in Lallemantia iberica seed mucilage edible coating to improve the physicochemical, microbiological and sensory properties of lamb during refrigerated storage. Journal of Food Measurement and Characterization, 15(6), 5556-5571.
[27] Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70.
[28] Peretto, G., Du, W.-X., Avena-Bustillos, R. J., Sarreal, S. B. L., Hua, S. S. T., Sambo, P., & McHugh, T. H. (2014). Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biology and Technology, 89, 11-18.
[29] Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363.
[30] He, Y., Bose, S. K., Wang, W., Jia, X., Lu, H., & Yin, H. (2018). Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International journal of molecular sciences, 19(8), 2194.
[31] Han, C., Lederer, C., McDaniel, M., & Zhao, Y. (2005). Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan‐based edible coatings. Journal of Food Science, 70(3), S172-S178.
[32] Tomadoni, B., Moreira, M. d. R., Pereda, M., & Ponce, A. G. (2018). Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT, 97, 384-389.