[1] Sivrikaya, S. (2020). A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV. Food Additives & Contaminants: Part A, 37(3), 488-495. https://doi.org/10.1080/19440049.2020.1711972
[2] Seyedabadi, M. M., Rostami, H., Jafari, S. M., & Fathi, M. (2021). Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food bioscience, 40, 100857. https://doi.org/10.1016/j.fbio.2020.100857
[3] Peng, X., Brown, M., Bowdler, P., & Honeychurch, K. C. (2020). Extraction-free, direct determination of caffeine in microliter volumes of beverages by thermal desorption-gas chromatography mass spectrometry. International Journal of Analytical Chemistry, 2020. https://doi.org/10.1155/2020/5405184
[4] Russo, M., Dugo, P., Fanali, C., Dugo, L., Zoccali, M., Mondello, L., & De Gara, L. (2018). Use of an online extraction technique coupled to liquid chromatography for determination of caffeine in coffee, tea, and cocoa. Food analytical methods, 11, 2637-2644. https://doi.org/10.1007/s12161-018-1247-5
[5] Cai, C., Li, F., Liu, L., & Tan, Z. (2019). Deep eutectic solvents used as the green media for the efficient extraction of caffeine from Chinese dark tea. Separation and Purification Technology, 227, 115723. https://doi.org/10.1016/j.seppur.2019.115723
[6] Chow, C. H., Kan, Y. C., & Ho, K. S. (2019). A Simple and Rapid Gas Chromatographic Method for Routine Caffeine Determination in Beverages using Nitrogen Phosphorus Detector. Journal of Analytical Chemistry, 74, 764-770. https://doi.org/10.1134/S1061934819080045
[7] Ilgaz, S., Sat, I. G., & Polat, A. (2018). Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique. Journal of food science and technology, 55(4), 1407-1415. https://doi.org/10.1007/s13197-018-3055-8
[8] Solghi, S., Emam‐Djomeh, Z., Fathi, M., & Farahani, F. (2020). The encapsulation of curcumin by whey protein: Assessment of the stability and bioactivity. Journal of Food Process Engineering, 43(6), e13403. https://doi.org/10.1111/jfpe.13403
[9] Nikoo, A. M., Kadkhodaee, R., Ghorani, B., Razzaq, H., & Tucker, N. (2018). Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules, 116, 208-216. https://doi.org/10.1016/j.ijbiomac.2018.04.167
[10] Bourbon, A. I., Cerqueira, M. A., & Vicente, A. A. (2016). Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, 180, 110-119. https://doi.org/10.1016/j.jfoodeng.2016.02.016
[11] Noor, N., Shah, A., Gani, A., Gani, A., & Masoodi, F. A. (2018). Microencapsulation of caffeine loaded in polysaccharide based delivery systems. Food Hydrocolloids, 82, 312-321. https://doi.org/10.1016/j.foodhyd.2018.04.001
[12] Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in food science & technology, 23(1), 13-27. http://dx.doi.org/10.1016/j.tifs.2011.08.003
[13] Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., & Babazadeh, A. (2016). Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization. Food bioscience, 13, 49-55. http://dx.doi.org/10.1016/j.fbio.2015.12.002
[14] Muhamad, I. I., Zaidel, D. N. A., Hashim, Z., Mohammad, N. A., & Bakar, N. F. A. (2020). Improving the delivery system and bioavailability of beverages through nanoencapsulation. In Nanoengineering in the beverage industry (pp. 301-332). Academic Press. https://doi.org/10.1016/B978-0-12-816677-2.00010-7
[15] Sarabandi, K., Jafari, S. M., Mohammadi, M., Akbarbaglu, Z., Pezeshki, A., & Heshmati, M. K. (2019). Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocolloids, 96, 442-450. https://doi.org/10.1016/j.foodhyd.2019.05.047
[16] Sarabandi, K., Mahoonak, A. S., Hamishehkar, H., Ghorbani, M., & Jafari, S. M. (2019). Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering, 251, 19-28. https://doi.org/10.1016/j.jfoodeng.2019.02.004
[17] Singh, H., Thompson, A., Liu, W., & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems. In Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 287-318). Woodhead Publishing. https://doi.org/10.1533/9780857095909.3.287
[18] Homayoonfal, M., Mousavi, S. M., Kiani, H., Askari, G., Desobry, S., & Arab-Tehrany, E. (2021). Encapsulation of berberis vulgaris anthocyanins into nanoliposome composed of rapeseed lecithin: A comprehensive study on physicochemical characteristics and biocompatibility. Foods, 10(3), 492. https://doi.org/10.3390/foods10030492
[19] Amjadi, S., Ghorbani, M., Hamishehkar, H., & Roufegarinejad, L. (2018). Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chemistry, 256, 156-162. from: https://doi.org/10.1016/j.foodchem.2018.02.114
[20] Yu, D. G., Yang, J. H., Wang, X., & Tian, F. (2012). Liposomes self-assembled from electrosprayed composite microparticles. Nanotechnology, 23(10), 105606. https://doi.org/ 10.1088/0957-4484/23/10/1056
[21] Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies, 19, 29-43. http://dx.doi.org/10.1016/j.ifset.2013.03.002
[22] Soleimani Fard, M., A. Sadeghi Mahonek, M. Ghorbani, Kh. Azizi and A. Sephond, 2017. Optimizing the extraction of Khoramabadi variety olive leaf extract and investigating the physical characteristics of lipid nanocarriers containing it. Nutritional Sciences and Food Industries of Iran, 13 (3): 92-81( in persian) .
[23] Liu, N., & Park, H. J. (2010). Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes. Colloids and Surfaces B: Biointerfaces, 76(1), 16-19. https://doi.org/10.1016/j.colsurfb.2009.09.041
[24] Wu, P. C., Tsai, Y. H., Liao, C. C., Chang, J. S., & Huang, Y. B. (2004). The characterization and biodistribution of cefoxitin-loaded liposomes. International journal of pharmaceutics, 271(1-2), 31-39. https://doi.org/10.1016/j.ijpharm.2003.10.034
[25] da Silva Malheiros, P., Sant'Anna, V., de Souza Barbosa, M., Brandelli, A., & de Melo Franco, B. D. G. (2012). Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. International Journal of Food Microbiology, 156(3), 272-277. http://dx.doi.org/10.1016/j.ijfoodmicro.2012.04.004
[26] Mohammadi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Advanced pharmaceutical bulletin, 4(Suppl 2), 569. https://doi.org/10.5681/apb.2014.084
[27] Chorilli, M., Calixto, G., Rimério, T. C., & Scarpa, M. V. (2013). Caffeine encapsulated in small unilamellar liposomes: characerization and in vitro release profile. Journal of dispersion science and technology, 34(10), 1465-1470. https://doi.org/10.1080/01932691.2012.739535
[28] Shah, R., Eldridge, D., Palombo, E., & Harding, I. (2014). Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of physical science, 25(1).
[29] Mozafari, M. R. (2010). Nanoliposomes: preparation and analysis. Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers, 29-50. https://doi.org/10.1007/978-1-60327-360-2_2
[30] Foteini, P., Pippa, N., Naziris, N., & Demetzos, C. (2019). Physicochemical study of the protein–liposome interactions: Influence of liposome composition and concentration on protein binding. Journal of liposome research, 29(4), 313-321. https://doi.org/10.1080/08982104.2018.1468774
[31] Miller, W. L. (2007). Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(6), 663-676. https://doi.org/10.1016/j.bbalip.2007.02.012
[32] Shin, G. H., Chung, S. K., Kim, J. T., Joung, H. J., & Park, H. J. (2013). Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Journal of agricultural and food chemistry, 61(46), 11119-11126. https://doi.org/10.1021/jf4035404
[33] Brandl, M. (2001). Liposomes as drug carriers: a technological approach. https://doi.org/10.1016/S1387-2656(01)07033-8
[34] Ramana, L. N., Sethuraman, S., Ranga, U., & Krishnan, U. M. (2010). Development of a liposomal nanodelivery system for nevirapine. Journal of biomedical science, 17, 1-9. https://doi.org/10.1186/1423-0127-17-57
[35] Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159-167. https://doi.org/10.1016/j.jff.2017.04.021
[36] Saqashirpour, S., 2013. Nanoliposome production for simultaneous encapsulation of vitamin E and vitamin C by thermal method (Mozaffari), Master's thesis of food industry science and engineering, Ghanbarzadeh, B. and Tolit, T. Faculty of Ares International Campus of Tabriz University (in persian).
[37] Li, Z., Paulson, A. T., & Gill, T. A. (2015). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. Journal of Functional Foods, 19, 733-743. https://doi.org/10.1016/j.jff.2015.09.058
[38] Chanda, H., Das, P., Chakraborty, R., & Ghosh, A. (2011). Development and evaluation of liposomes of fluconazole. J Pharm Biomed Sci, 5(27), 1-9.
[39] Gupta, U., Singh, V. K., Kumar, V., & Khajuria, Y. (2014). Spectroscopic studies of cholesterol: fourier transform infra-red and vibrational frequency analysis. Materials focus, 3(3), 211-217. https://doi.org/10.1166/mat.2014.1161
[40] Mohan, V., Naske, C. D., Britten, C. N., Karimi, L., & Walters, K. B. (2020). Hydroxide-catalyzed cleavage of selective ester bonds in phosphatidylcholine: An FTIR study. Vibrational Spectroscopy, 109, 103055. https://doi.org/10.1016/j.vibspec.2020.103055
[41] Wanule, D., Balkhande, J. V., Ratnakar, P. U., Kulkarni, A. N., & Bhowate, C. S. (2014). Extraction and FTIR analysis of chitosan from American cockroach, Periplaneta americana. Extraction, 3(3), 299-304.
[42] Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., & Stepnowski, P. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine drugs, 8(5), 1567-1636. https://doi.org/10.3390/md8051567
[43] Hamedinasab, H., Rezayan, A. H., Mellat, M., Mashreghi, M., & Jaafari, M. R. (2020). Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. International journal of biological macromolecules, 156, 1455-1463. https://doi.org/10.1016/j.ijbiomac.2019.11.190