[1] Amini, F. (2020). Heavy Metal Concentrations in Padina gymnospora and Padina tetrastromatica Dictyotaceae, Ochrophyta) and Sediments of Bushehr Coastline (Bushehr Province, Iran). Journal of Phycological Research, 4(1): 497-507.
[2] Rohani-Ghadikolaei, K., Abdulalian, E. and Ng, W.K. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of food science and technology, 49(6): 774-780.
[3] Hlila, M. B., Kaouther, M., Hichem Ben Jannet, Mahjoub Aouni, Maha Mastouri, and Boulbaba, S. (2017). Antimicrobial Activity of Tunisian Euphorbia Paralias L. Asian Pacific Journal of Tropical Biomedicine, 7(7):629–32.
[4] Ansari, A. A., Ghanem, S. M. and Naeem, M. (2019). Brown Alga Padina: A review. International Journal of Botany Studies, 4(1), pp.01-03.
[5] Usoltseva, R.V., Anastyuk, S.D., Ishina, I. A., Isakov, V. V., Zvyagintseva, T. N., Thinh, P. D., Zadorozhny, P. A., Dmitrenok, P. S. and Ermakova, S. P. (2018). Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydrate Polymers, 184, pp.260-268.
[6] Shirani Bidabadi, Kh, Safaeian, Mousavi Nodoshan, R. Rahimifard, N. (2021). Identification of bioactive compounds in the extracts of brown algae Sargassum (Sargassum angustifulium) and Padina )Padina distromatic( and evaluation of antimicrobial, antioxidant and enzymatic properties. Iranian Food Science and Technology Association (IFSTA), 18(4): DOI:10.22067/ifstrj.2110.1104. (In Persian).
[7] Shirani Bidabadi, Kh, Safaeian, Mousavi Nodoshan, R. Rahimifard, N. (2021). Evaluation and comparison of phytochemical compounds and antioxidant properties of Padinadistromatic and Sargassumangustifulium Ultrasound extracts. Iranian Journal of Food Science and Technology, 123(19): 81-91. (In Persian).
[8] Shirani Bidabadi, Kh, Safaeian, Mousavi Nodoshan, R. Rahimifard, N. (2021). Evaluation of different extraction methods (maceration and ultrasound) on antioxidant, anti-Alzheimer's and antimicrobial properties of Padina distromatic extract. Iranian Journal of Food Science and Technology, 122(19): 199-209. (In Persian).
[9] Savaghebi, D., Ghaderi-Ghahfarokhi, M. and Barzegar, M. (2021). Encapsulation of sargassum boveanum algae extract in nano-liposomes: Application in functional mayonnaise production. Food and Bioprocess Technology, 14(7), pp.1311-1325.
[10] Farzaneh, V. and Carvalho, I. S. (2015). A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Industrial Crops and Products, 65, pp.247-258.
[11] Vinceković, M., Viskić, M., Jurić, S., Giacometti, J., Kovačević, D. B., Putnik, P., Donsì, F., Barba, F. J. and Jambrak, A. R. (2017). Innovative technologies for encapsulation of Mediterranean plants extracts. Trends in Food Science & Technology, 69, pp.1-12.
[12] Yang, S., Liu, L., Han, J. and Tang, Y. (2020). Encapsulating plant ingredients for dermocosmetic application: An updated review of delivery systems and characterization techniques. International journal of cosmetic science, 42(1), pp.16-28.
[13] Pamunuwa, G. K. and Karunaratne, D. (2022). Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. Journal of Food Quality, DOI:10.1155/2022/5272592.
[14] Karimi, N., Ghanbarzadeh, B., Hamishehkar, H., Keyvani, F., Pezeshki, A. and Gholian, M. M. (2015). Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application. Applied Food Biotechnology, 2(3): 17-27.
[15] Hassanzadeh-Kiabi, F. and Negahdari, B. (2018). Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat. Artificial cells, nanomedicine, and biotechnology, 46(5), pp.994-1000.
[16] Pezeshkpour, V., Khosravani, S. A., Ghaedi, M., Dashtian, K., Zare, F., Sharifi, A., Jannesar, R. and Zoladl, M., (2018). Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrasonics Sonochemistry, 40, pp.1031-1038.
[17] Mozafari, M.R. )2005(. Liposomes: an overview of manufacturing techniques. Cellular and molecular biology letters, 10(4), p.711.
[18] Pan, L., Wang, H. and Gu, K. )2018(. Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure. Molecules, 23(11), p.2822.
[19] Bouarab, L., Maherani, B., Kheirolomoom, A., Hasan, M., Aliakbarian, B., Linder, M. and Arab-Tehrany, E. )2014(. Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids and surfaces B: Biointerfaces, 115, pp.197-204.
[20] Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F. and Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), pp.771-776.
[21] Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A.O., Krueger, C.G., Gunasekaran, S. and Reed, J.D. )2010(. Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2(2), pp.99-106.
[22] Ruozi, B., Belletti, D., Tombesi, A., Tosi, G., Bondioli, L., Forni, F. and Vandelli, M. A. )2011(. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. International journal of nanomedicine, 6, p.557.
[23] Ramli, N. A., Ali, N., Hamzah, S. and Yatim, N. I. )2021(. Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon, 7(4), p.e06649.
[24] Alexander, M. Lopez, A. A., Fang, Y. and Corredig, M. )2012(. Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Lwt, 47(2), pp.427-436.
[25] Sarabandi, K., Jafari, S.M., Mohammadi, M., Akbarbaglu, Z., Pezeshki, A. and Heshmati, M. K. (2019). Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocolloids, 96, pp.442-450.
[26] Mozafari, M., Johnson, C., Hatziantoniou, S. and Demetzos, C. )2008(. Nanoliposomes and their applications in food nanotechnology. Journal of liposome research, 18(4), pp.309-327.
[27] Smith, M. C., Crist, R. M., Clogston, J. D. and McNeil, S .E. )2017(. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Analytical and bioanalytical chemistry, 409(24), pp.5779-5787.
[28] Esmaeilzadeh Kenari, R. and Razavi, R. )2022(. Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food Science & Nutrition, 10(2), pp.525-535.
[29] Machado R. A., Pinheiro, A. C, Vicente, A. A., Souza-Soares, L. A. and Cerqueira, A. (2019). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Reserch International, 656-667.
[30] Pinilla, C. M. B., Noreña, C. P. Z. and Brandelli, A. )2017(. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, pp.470-476.
[31] Rafiee, Z., Barzegar, M., Sahari, M. A. and Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food chemistry, 220, pp.115-122.
[32] Pagnussatt, F. A., de Lima, V. R., Dora, C. L., Costa, J. A. V., Putaux, J. L. and Badiale-Furlong, E. )2016(. Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food chemistry, 211, pp.616-623.
[33] Heurtault, B., Saulnier, P., Pech, B., Proust, J. E. and Benoit, J. P. )2003(. Physico-chemical stability of colloidal lipid particles. Biomaterials, 24(23), pp.4283-4300.