بررسی ویژگی‌های ساختاری نانولیپوزوم‌های‌ حاوی عصاره جلبک پادینا (Padina distromatic) تولید شده به روش حرارتی

نویسندگان
1 دانشجوی دکترای تخصصی، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
2 دانشیار گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
3 استاد تمام گروه میکروبیولوژی- اداره کل آزمایشگاه های کنترل غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران ایران.
چکیده
ریزپوشانی ترکیبات زیست فعال در حامل‏های لیپیدی از جمله لیپوزوم­ها علاوه بر بهبود پایداری در زمان نگهداری با افزایش زیست‏دسترس‏پذیری و رهایش کنترل شده موجب ارتقاء کارایی این ترکیبات در شرایط درون‏تنی می­گردد. جلبک پادینا دارای مقادیر قابل توجهی از پلی‏فنل‏ها با خواص آنتی‏اکسیدانی، ضدمیکروبی و مهار آنزیم استیل‏کولین‏استراز (AChE) است که قابلیت کاربرد به عنوان مکمل ضدسرطان و بهبوددهنده اختلالات نورولوژیک را دارد. از این رو هدف از انجام این پژوهش تولید و بررسی خصوصیات ساختاری نانولیپوزوم­های حاوی عصاره جلبک پادینا با استفاده از روش حرارتی بود. بدین منظور آزمون‏های توزیع و اندازه ذرات نانولیپوزوم‏ها، پتانسیل زتا، راندمان درون‏پوشانی عصاره و تصاویر میکروسکوپ الکترونی عبوری انجام شد. نتایج نشان داد اندازه ذرات نانولیپوزوم­های تولیدی در سطوح متفاوت فسفاتیدیل کولین (لسیتین) (5/2 و 5/4 درصد) و عصاره جلبک پادینا (7/0 و 2 درصد) در محدوده 318-60 نانومتر بودند. نتایج آزمون شاخص چند پراکندگی و پتانسیل زتا نیز حاکی از یکنواختی ذرات تولیدی همراه با دافعه الکترواستاتیکی بالای میان ذرات بود. همچنین یافته‏های بدست آمده نشان داد قابلیت بارگذاری ذرات نانولیپوزوم (راندمان درون‏پوشانی عصاره) در کمترین سطح ماده دیواره­ای (5/2 درصد) و بیشترین سطح عصاره جلبک پادینا (2 درصد) 8/52 درصد بود. ارزیابی خصوصیات مورفولوژیک ساختار نانولیپوزوم با استفاده از میکروسکوپ الکترونی عبوری نیز نشان‏دهنده شکل‏گیری ذراتی یکنواخت با هندسه کروی شکل بود. با توجه به نتایج حاصله از این پژوهش می‏توان گفت که قابلیت تولید ساختار نانولیپوزومی حاوی عصاره جلبک پادینا با خصوصیات ساختاری مناسب مهیاست که این امر می­تواند دورنمای کاربرد احتمالی این عصاره با رویکردی درمانی را بهبود ببخشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the structural properties of nanoliposomes containing Padina distromatic algae extract fabricated by heating method

نویسندگان English

Khadijeh Shirani bidabadi 1
shilla safaeian 2
Rezvan Mousavi nadushan 2
Nahid Rahimifard 3
1 Department of Food Science and Technology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Food Science and Technology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Food and Drug Control Laboratories, Ministry of Health and Medical Education, Tehran, Iran.
چکیده English

Microencapsulation of bioactive compounds in lipid carriers, such as liposomes, in addition to improving stability during storage by increasing bioavailability and controlled release, increases the efficiency of these compounds in vivo. The studies conducted on Padina algae show the existence of a high level of phenolic and antimicrobial compounds. Also, this alga has a significant amount of polyphenols with antioxidant and anti-AChE (acetylcholinesterase) properties, which can be used as a supplement to improve neurological disorders. Therefore, the purpose of this research was to produce and investigate the structural properties of nanoliposomes containing Padina algae extract using the heating method. The particle size of nanoliposomes produced at varying levels of lecithin and loaded extract was obtained in the range between 318 and 60 nm. The resulting values ​​for the polydispersity index and zeta potential indicate the uniformity of the produced particles along with the high electrostatic repulsion between the particles. The ability to load liposome particles at the lowest level of wall substance and the highest concentration level of the extract reached 52.8±0.3% in this research. Evaluation of the morphological characteristics of the structure using a transmission electron microscope shows the formation of uniform particles with a spherical geometry. The results of this research show the ability to produce a liposome structure containing Padina algae extract with suitable structural properties. These results can improve the prospect of possible use of this extract with a therapeutic approach.

کلیدواژه‌ها English

Nanoliposome
Padina algae extract
Anti-cancer
Anti- alzheimer
[1] Amini, F. (2020). Heavy Metal Concentrations in Padina gymnospora and Padina tetrastromatica Dictyotaceae, Ochrophyta) and Sediments of Bushehr Coastline (Bushehr Province, Iran). Journal of Phycological Research, 4(1): 497-507.
[2] Rohani-Ghadikolaei, K., Abdulalian, E. and Ng, W.K. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. Journal of food science and technology, 49(6): 774-780.
[3] Hlila, M. B., Kaouther, M., Hichem Ben Jannet, Mahjoub Aouni, Maha Mastouri, and Boulbaba, S. (2017). Antimicrobial Activity of Tunisian Euphorbia Paralias L. Asian Pacific Journal of Tropical Biomedicine, 7(7):629–32.
[4] Ansari, A. A., Ghanem, S. M. and Naeem, M. (2019). Brown Alga Padina: A review. International Journal of Botany Studies, 4(1), pp.01-03.
[5] Usoltseva, R.V., Anastyuk, S.D., Ishina, I. A., Isakov, V. V., Zvyagintseva, T. N., Thinh, P. D., Zadorozhny, P. A., Dmitrenok, P. S. and Ermakova, S. P. (2018). Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydrate Polymers, 184, pp.260-268.
[6] Shirani Bidabadi, Kh, Safaeian, Mousavi Nodoshan, R. Rahimifard, N. (2021). Identification of bioactive compounds in the extracts of brown algae Sargassum (Sargassum angustifulium) and Padina )Padina distromatic( and evaluation of antimicrobial, antioxidant and enzymatic properties. Iranian Food Science and Technology Association (IFSTA), 18(4): DOI:10.22067/ifstrj.2110.1104. (In Persian).
[7] Shirani Bidabadi, Kh, Safaeian, Mousavi Nodoshan, R. Rahimifard, N. (2021). Evaluation and comparison of phytochemical compounds and antioxidant properties of Padinadistromatic and Sargassumangustifulium Ultrasound extracts. Iranian Journal of Food Science and Technology, 123(19): 81-91. (In Persian).
[8] Shirani Bidabadi, Kh, Safaeian, Mousavi Nodoshan, R. Rahimifard, N. (2021). Evaluation of different extraction methods (maceration and ultrasound) on antioxidant, anti-Alzheimer's and antimicrobial properties of Padina distromatic extract. Iranian Journal of Food Science and Technology, 122(19): 199-209. (In Persian).
[9] Savaghebi, D., Ghaderi-Ghahfarokhi, M. and Barzegar, M. (2021). Encapsulation of sargassum boveanum algae extract in nano-liposomes: Application in functional mayonnaise production. Food and Bioprocess Technology, 14(7), pp.1311-1325.
[10] Farzaneh, V. and Carvalho, I. S. (2015). A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Industrial Crops and Products, 65, pp.247-258.
[11] Vinceković, M., Viskić, M., Jurić, S., Giacometti, J., Kovačević, D. B., Putnik, P., Donsì, F., Barba, F. J. and Jambrak, A. R. (2017). Innovative technologies for encapsulation of Mediterranean plants extracts. Trends in Food Science & Technology, 69, pp.1-12.
[12] Yang, S., Liu, L., Han, J. and Tang, Y. (2020). Encapsulating plant ingredients for dermocosmetic application: An updated review of delivery systems and characterization techniques. International journal of cosmetic science, 42(1), pp.16-28.
[13] Pamunuwa, G. K. and Karunaratne, D. (2022). Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. Journal of Food Quality, DOI:10.1155/2022/5272592.
[14] Karimi, N., Ghanbarzadeh, B., Hamishehkar, H., Keyvani, F., Pezeshki, A. and Gholian, M. M. (2015). Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application. Applied Food Biotechnology, 2(3): 17-27.
[15] Hassanzadeh-Kiabi, F. and Negahdari, B. (2018). Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat. Artificial cells, nanomedicine, and biotechnology, 46(5), pp.994-1000.
[16] Pezeshkpour, V., Khosravani, S. A., Ghaedi, M., Dashtian, K., Zare, F., Sharifi, A., Jannesar, R. and Zoladl, M., (2018). Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrasonics Sonochemistry, 40, pp.1031-1038.
[17] Mozafari, M.R. )2005(. Liposomes: an overview of manufacturing techniques. Cellular and molecular biology letters, 10(4), p.711.
[18] Pan, L., Wang, H. and Gu, K. )2018(. Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure. Molecules, 23(11), p.2822.
[19] Bouarab, L., Maherani, B., Kheirolomoom, A., Hasan, M., Aliakbarian, B., Linder, M. and Arab-Tehrany, E. )2014(. Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids and surfaces B: Biointerfaces, 115, pp.197-204.
[20] Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F. and Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), pp.771-776.
[21] Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A.O., Krueger, C.G., Gunasekaran, S. and Reed, J.D. )2010(. Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2(2), pp.99-106.
[22] Ruozi, B., Belletti, D., Tombesi, A., Tosi, G., Bondioli, L., Forni, F. and Vandelli, M. A. )2011(. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. International journal of nanomedicine, 6, p.557.
[23] Ramli, N. A., Ali, N., Hamzah, S. and Yatim, N. I. )2021(. Physicochemical characteristics of liposome encapsulation of stingless bees' propolis. Heliyon, 7(4), p.e06649.
[24] Alexander, M. Lopez, A. A., Fang, Y. and Corredig, M. )2012(. Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Lwt, 47(2), pp.427-436.
[25] Sarabandi, K., Jafari, S.M., Mohammadi, M., Akbarbaglu, Z., Pezeshki, A. and Heshmati, M. K. (2019). Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocolloids, 96, pp.442-450.
[26] Mozafari, M., Johnson, C., Hatziantoniou, S. and Demetzos, C. )2008(. Nanoliposomes and their applications in food nanotechnology. Journal of liposome research, 18(4), pp.309-327.
[27] Smith, M. C., Crist, R. M., Clogston, J. D. and McNeil, S .E. )2017(. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Analytical and bioanalytical chemistry, 409(24), pp.5779-5787.
[28] Esmaeilzadeh Kenari, R. and Razavi, R. )2022(. Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food Science & Nutrition, 10(2), pp.525-535.
[29] Machado R. A., Pinheiro, A. C, Vicente, A. A., Souza-Soares, L. A. and Cerqueira, A. (2019). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Reserch International, 656-667.
[30] Pinilla, C. M. B., Noreña, C. P. Z. and Brandelli, A. )2017(. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, pp.470-476.
[31] Rafiee, Z., Barzegar, M., Sahari, M. A. and Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food chemistry, 220, pp.115-122.
[32] Pagnussatt, F. A., de Lima, V. R., Dora, C. L., Costa, J. A. V., Putaux, J. L. and Badiale-Furlong, E. )2016(. Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food chemistry, 211, pp.616-623.
[33] Heurtault, B., Saulnier, P., Pech, B., Proust, J. E. and Benoit, J. P. )2003(. Physico-chemical stability of colloidal lipid particles. Biomaterials, 24(23), pp.4283-4300.