بهینه‌سازی شرایط استخراج آبی ترکیبات فنلی و آنتی‌اکسیدانی برگ و ریشه گیاه داغ قارپوزی با کاربرد متدولوژی سطح پاسخ

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3 دکتری، دانشیار، گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
چکیده
عصاره گیاهان دارویی دارای ترکیبات موثری نظیر فنلی، آنتی‌اکسیدانی و ضدمیکروبی می­باشند. جهت استخراج عصاره از گیاهان می­توان از روش‌های سنتی مانند سوکسله و غرقابی و یا فناوری­های نوین غیر­حرارتی نظیر امواج فراصوت استفاده نمود. نوع روش استخراج بر کمیت و کیفیت عصاره استخراجی تاثیرگذار است. هدف از این مطالعه، بررسی کارایی استفاده از امواج فراصوت در استخراج ترکیبات فنلی و آنتی‌اکسیدانی برگ و ریشه گیاه داغ قارپوزی در محیط آبی بود. روش آماری سطح پاسخ و طرح باکس بنکن به منظور بهینه‌سازی فاکتورهای استخراج شامل زمان در سه سطح (10، 25 و 40 دقیقه) و شدت صوت در سه سطح (40، 70 و 100 درصد) با حلال آبی مورد استفاده قرار گرفتند. نتایج آزمون‌های انجام شده با روش آماری سطح پاسخ نشان داد، شدت صوت به عنوان تاثیرگذارترین فاکتور استخراج ترکیبات فنلی و آنتی‌اکسیدانی از برگ و ریشه گیاه داغ قارپوزی نسبت به زمان فراصوت‌دهی می‌باشد به طوری که با افزایش زمان و شدت صوت میزان استخراج این ترکیبات افزایش یافت. شرایط بهینه استخراج ترکیبات فنلی و آنتی‌اکسیدانی با حمام فراصوت، زمان 36 دقیقه و شدت صوت 91 درصد تعیین گردید. در این شرایط بهینه، میزان ترکیبات فنلی کل برگ و ریشه به ترتیب 80/21 و 96/14 میلی­گرم بر گرم و میزان IC50 برگ و ریشه نیز به ترتیب 75/11 و 17/52 میکروگرم بر میلی‌گرم بدست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of aqueous extraction conditions of phenolic and antioxidant compounds of Caper (Capparis spinosa) leaves and roots using response surface

نویسندگان English

Abdolvahed Safarzaei1 Abdolvahed Safarzaei 1
reza esmaeilzadeh kenari 2
Reza Farahmandfar 3
1 Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Ph.D, Professor, Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Ph.D, associate Professor, Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده English

Medicinal plant extracts contain effective compounds such as phenolic, antioxidant and antimicrobial. To extract the extracts from plants, traditional methods such as soxhlet and maceration or new nonthermal technologies such as ultrasound can be used. The type of extraction method affects the quantity and quality of the extract. The aim of this study was to evaluate the efficiency of using ultrasound in the aqueous extraction of phenolic and antioxidant compounds of Capparis spinosa leaves and roots. Response surface methodology (RSM) and Box–Behnken design were used to optimize the extraction factors, including extraction time (10, 25, 40 min) and sound intensity (40, 70, 100 %) with aqueous solvent. The results showed sound intensity was more effective factor than time. By increasing of sound intensity and the time of extraction the yield increased. The optimum conditions for extraction of phenolic and antioxidant compounds were as follows: extraction time 36 min and sound intensity 91 percent. Total phenolic content was obtained 21.80 mg/g in leaf and 14.96 mg/g in root and IC50 was obtained 11.75 µg/mg in leaf and 52.17 µg/mg in root.

کلیدواژه‌ها English

Extraction
Optimization
Ultrasound
Capparis spinosa
[1] Mishra, B. B., & Tiwari, V. K. (2011). Natural products: An evolving role in future drug discovery. European Journal of Medicinal Chemistry, 46(10): 4769-4807.
[2] Rodrigues, S., Pinto, G. A. S., & Fernandes, F. A. N. (2008). Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrasonics Sonochemistry, 15(1): 95-100.
[3] Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery, 4(3): 206-220.
[4] Tai, C. J., Wang, W. C., Wang, C. K., Wu, C. H., Yang, M. D., Chang, Y. J., ... & Tai, C. J. (2013). Fermented wheat germ extract induced cell death and enhanced cytotoxicity of Cisplatin and 5-Fluorouracil on human hepatocellular carcinoma cells. Evid Based Complement Alternat Med, 2013: 1-9.
[5] Aslam, M., & Sial, A. A. (2014). Effect of hydroalcoholic extract of Cydonia oblonga miller (Quince) on sexual behaviour of wistar rats. Advances in Pharmacological Sciences, 20(3): 1-6.
[6] Heydari Majd, M., Rajaei, A., Salar Bashi, D., Mortazavi, S. A., & Bolourian, S. (2014). Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Industrial Crops and Products, 57: 195-202.
[7] Leong, T. S. H., Manickam, S., Martin, G. J., Li, W., & Ashokkumar, M. (2018). Ultrasonic Production of Nano-emulsions for Bioactive Delivery in Drug and Food Applications. Springer, 46.
[8] Wu, Y., Cui, S. W., Tang, J., & Gu, X. (2007). Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food chemistry, 105(4): 1599-1605.
[9] Luque-Garcıa, J., & De Castro, M. L. (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1): 41-47.
[10] Chedraoui, S., Abi-Rizk, A., El-Beyrouthy, M., Chalak, L., Ouaini, N., & Rajjou, L. (2017). Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Frontiers in plant science, 8: 1845.
[11] Gan, L., Zhang, C., Yin, Y., Lin, Z., Huang, Y., Xiang, J., ... & Li, M. (2013). Anatomical adaptations of the xerophilous medicinal plant, Capparis spinosa, to drought conditions. Horticulture, Environment, and Biotechnology, 54(2): 156-161.
[12] Moufid, A., & Farid, O. M. Eddouks (2015). Pharmacological Properties of Capparis spinosa Linn. Int J Diabetol Vasc Dis Res, 3(5): 99-104.
[13] Zhou, H., Jian, R., Kang, J., Huang, X., Li, Y., Zhuang, C., ... & Wu, T. (2010). Anti-inflammatory effects of caper (Capparis spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. Journal of agricultural and food chemistry, 58(24): 12717-12721.
[14] Fallah Huseini, H., Hasani-Rnjbar, S., Nayebi, N., Heshmat, R., Sigaroodi, F. K., Ahvazi, M., ... & Kianbakht, S. (2013). Capparis spinosa L. (Caper) fruit extract in treatment of type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Complementary Therapies in Medicine, 21(5): 447-452.
[15] Mollica, A. (2017). Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. Journal of functional foods, 35: 32-42.
[16] Yang, T., Liu, Y., Wang, C., & Wang, Z. (2008). Advances on investigation of chemical constituents, pharmacological activities and clinical applications of Capparis spinosa. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 33(21): 2453-2458.
[17] Zeggwagh, N., Michel, J., & Eddouks, M. (2007). Cardiovascular effect of Capparis spinosa aqueous extract. part VI: in vitro vasorelaxant Effect. Am J Pharmacol Toxicol, 2(3): 135-139.
[18] Mahboubi, M., & Mahboubi, A. (2014). Antimicrobial activity of Capparis spinosa as its usages in traditional medicine. Herba Polonica, 60(1): 39-48.
[19] Mansour, R. B., Jilani, I. B., Bouaziz, M., Gargouri, B., Elloumi, N., Attia, H., ... & Lassoued, S. (2016). Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa. Cytotechnology, 68(1): 135-142.
[20] Boudries, H., Nabet, N., Chougui, N., Souagui, S., Loupassaki, S., Madani, K., & Dimitrov, K. (2019). Optimization of ultrasound-assisted extraction of antioxidant phenolics from Capparis spinosa flower buds and LC–MS analysis. Journal of Food Measurement and Characterization, 13(3): 2241-2252.
[21] Mazarei, F., Jooyandeh, H., Noshad, M., & Hojjati, M. (2017). Polysaccharide of caper (Capparis spinosa L.) Leaf: Extraction optimization, antioxidant potential and antimicrobial activity. International journal of biological macromolecules, 95: 224-231.
[22] Hayouni, E. A., Abedrabba, M., Bouix, M., & Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105(3): 1126-1134.
[23] Sharififar, F., Moshafi, M., Mansouri, S., Khodashenas, M., & Khoshnoodi, M. (2007). In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food control, 18(7): 800-805.
[24] Gu, X., Cai, J., Zhang, Z., & Su, Q. (2007). Dynamic Ultrasound‐Assisted Extraction of Catechins and Caffeine in Some Tea Samples. Annali di Chimica: Journal of Analytical, Environmental and Cultural Heritage Chemistry, 97(5‐6): 321-330.
[25] Li, J. W., Ding, S. D., & Ding, X. L. (2007). Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. Journal of food engineering, 80(1): 176-183.
[26] Bhoyar, M. S., Mishra, G. P., Naik, P. K., & Srivastava, R. B. (2011). Estimation of antioxidant activity and total phenolics among natural populations of Caper ('Capparis spinosa') leaves collected from cold arid desert of Trans-Himalayas. Australian Journal of Crop Science, 5(7): 912-919.
[27] Aliyazicioglu, R., Eyupoglu, O. E., Sahin, H., Yildiz, O., & Baltas, N. (2013). Phenolic components, antioxidant activity, and mineral analysis of Capparis spinosa L. African Journal of Biotechnology, 12(47): 6643-6649.
[28] Arrar, L., Benzidane, N., Krache, I., Charef, N., Khennouf, S., & Baghiani, A. (2013). Comparison between polyphenol contents and antioxidant activities of different parts of Capparis spinosa L. Pharmacognosy Communications, 3(2): 70-74.
[29] Moghaddasian, B., Eradatmand, A., & Alaghemand, A. (2012). Quantitative analysis of quercetin in different parts of Capparis spinosa by HPLC. Annals of Biological Research, 3(12): 5775-5778.