استخراج عصاره فنولی از برگ تربچه (Raphanus sativus L.) به روش حرارت‌دهی مقاومتی: بهینه‌سازی عددی و مدل‌سازی سینتیکی

نویسندگان
1 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان 38791-45371، ایران
2 1دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان 38791-45371، ایران
3 گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان 38791-45371، ایران
چکیده
این پژوهش با هدف بهینه‌سازی عددی و مدل‌سازی سینتیکی استخراج عصاره فنولی از برگ‌های تربچه (Raphanus sativus L.) به‌روش حرارت‌دهی مقاومتی به منظور درک بهتر و بهینه‌سازی فرآیند استخراج انجام شد. اثر متغیرهای استخراج بر راندمان استخراج، محتوای فنول کل و فعالیت مهار رادیکال‌های آزاد DPPH، در ولتاژ گرادیان برابر 30-10 ولت بر سانتی‌متر، دمای 30-60 درجه سلسیوس، نسبت حلال (اتانول به آب) 100- 30% و زمان استخراج 10-30 دقیقه مورد بررسی قرار گرفت. مدل‌های تجربی مختلف مانند مدل‌های مرتبه اول، جذب و مدل‌های سیگموئید برای پیش‌بینی سینتیک انتقال جرم بدون در نظر گرفتن پدیده‌های زمینه‌ای بررسی شدند. نتایج نشان داد که اثر گرادیان ولتاژ، زمان استخراج و نسبت حلال (اتانول به آب) بر راندمان استخراج، محتوای فنول کل و فعالیت مهار DPPH معنی‌دار بود (05/0˂p). اگرچه افزایش دمای استخراج به‌طور معنی‌داری منجر به کاهش محتوای فنول کل و فعالیت مهار رادیکال‌های آزاد DPPH شد (05/0˂p)، اما این متغیر تأثیر معنی‌داری بر عملکرد استخراج نداشت (05/0˃p). در شرایط بهینه، راندمان استخراج و محتوای فنول کل تجربی نزدیک به مقادیر پیش‌بینی ‌شده مدل سطح پاسخ درجه دوم بود. بر اساس مدل‌سازی سینتیکی، می‌توان گفت که مدل سینتیکی سیگموئیدی در مقایسه با مدل‌های سینتیکی مرتبه اول و جذبی، بیشتر می‌تواند نتایج تجربی عصاره برگ تربچه را با روش حرارت‌دهی مقاومتی مدل نمایند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Ohmic heating extraction of radish (Raphanus sativus L.) leaf phenolic extract: Numerical optimization and kinetic modelling

نویسندگان English

Mohsen Zandi 1
Ali Ganjloo 1
Mandana Bimakr 2
Mina Nasiri 3
1 Associate Professor, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
2 Associate Professor, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
3 MSc degree, Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
چکیده English

This research aimed to model the kinetic of ohmic heating extraction method of radish (Raphanus sativus L.) leaf extract in order to understand and optimize the extraction process .The effect of extraction parameters on extraction yield, total phenol content and DPPH scavenging activity was discussed, at a gradient voltage of 10-30 V/cm, temperature of 30-60°C, solvent ration (Ethanol to water) of 30-100% and extraction time of 10-30 min. Different empirical models such as first order, adsorption and sigmoid models presented to predict the kinetics of mass transfer without taking into account the underlying phenomena. Results indicated that the effect of gradient voltage, extraction time and solvent ratio (ethanol to water) on the extraction yield, total phenolic content and DPPH scavenging activity were significant (p˂0.05). Although increasing extraction temperature significantly resulted in a lower total phenolic content and DPPH scavenging activity of extract (p<0.05), however, this parameter no significant effect the extraction yield (p>0.05). Under optimum conditions, the experimental extraction yield and total phenol content were close to the predicted values calculated from the quadratic response surface model. Based on kinetics modeling that has been done, it can be said that the sigmoid kinetic model more can represent well the experimental results of radish leaf extract by the ohmic heating method when compared with the first-order and adsorption kinetic models.

کلیدواژه‌ها English

Ohmic heating
Radish leaf extract
Total phenolic content
Extraction yield
Kinetics modelling
1. Karami, P., M. Zandi, and A. Ganjloo, Evaluation of key parameters during ohmic-assisted hydro-distillation of essential oil from aerial part of yarrow (Achillea millefolium L.). Journal of Applied Research on Medicinal and Aromatic Plants, 2022. 31: p. 100425.
2. Takó, M., et al., Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants, 2020. 9(2): p. 165.
3. Manzoor, M.F., et al., Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. Journal of Food Biochemistry, 2019. 43(9): p. e12974.
4. Efenberger-Szmechtyk, M., A. Nowak, and A. Czyzowska, Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Critical reviews in food science and nutrition, 2021. 61(1): p. 149-178.
5. Boukhatem, M.N. and W.N. Setzer, Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plants, 2020. 9(6): p. 800.
6. Vinatoru, M., T. Mason, and I. Calinescu, Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 2017. 97: p. 159-178.
7. Gavahian, M., et al., Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. Advances in food and nutrition research, 2020. 91: p. 227-273.
8. Gavahian, M. and A. Farahnaky, Ohmic-assisted hydrodistillation technology: A review. Trends in Food Science & Technology, 2018. 72: p. 153-161.
9. Asl, R.M.Z., et al., Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Research International, 2018. 107: p. 462-469.
10. Tunç, M.T. and I. Koca, Ohmic heating assisted hydrodistillation of clove essential oil. Industrial Crops and Products, 2019. 141: p. 111763.
11. Jafari, R., M. Zandi, and A. Ganjloo, Effect of ultrasound and microwave pretreatments on extraction of anise (Pimpinella anisum L.) seed essential oil by ohmic-assisted hydrodistillation. Journal of Applied Research on Medicinal and Aromatic Plants, 2022. 31: p. 100418.
12. Brochier, B., G.D. Mercali, and L.D.F. Marczak, Effect of ohmic heating parameters on peroxidase inactivation, phenolic compounds degradation and color changes of sugarcane juice. Food and Bioproducts Processing, 2018. 111: p. 62-71.
13. Son, S.-U., et al., Evaluation of antitumor metastasis via immunostimulating activities of pectic polysaccharides isolated from radish leaves. Journal of Functional Foods, 2021. 85: p. 104639.
14. Zandi, M., et al., Effect of active coating containing radish leaf extract with or without vacuum packaging on the postharvest changes of sweet lemon during cold storage. Journal of Food Processing and Preservation, 2021. 45(3): p. e15252.
15. Sung, N.-Y., et al., Increase in anti-oxidant components and reduction of off-flavors on radish leaf extracts by extrusion process. Journal of the Korean Society of Food Science and Nutrition, 2016. 45(12): p. 1769-1775.
16. Zandi, M., et al., Application of fuzzy logic and neural-fuzzy inference system (ANFIS) for prediction of physicochemical changes and quality classification of coated sweet lemon during storage. 2021.
17. Kim, H., Anti-oxidant activity and anti-proliferativity effect of cancer cell using heated radish extract. J Adv Eng Technol, 2018. 11: p. 137-144.
18. Banihani, S.A., Radish (Raphanus sativus) and diabetes. Nutrients, 2017. 9(9): p. 1014.
19. Rani, A., et al., Enzymatically assisted extraction of antioxidant and anti-mutagenic compounds from radish (Raphanus sativus). Environmental Technology & Innovation, 2021. 23: p. 101620.
20. Kobayashi, W., et al., Metabolism of glutamic acid to alanine, proline, and γ‐aminobutyric acid during takuan‐zuke processing of radish root. Journal of Food Science, 2021. 86(2): p. 563-570.
21. Ajami, M.R., A. Ganjloo, and M. Bimakr, Continuous fast microwave-assisted extraction of radish leaves polysaccharides: optimization, preliminary characterization, biological, and techno-functional properties. Biomass Conversion and Biorefinery, 2022: p. 1-14.
22. Ganjloo, A., M. Bimakr, and M. Ghorbani, Study the effect of different drying methods and solvent type on kinetics of phenolic compounds extraction from green pea pod and evaluation of its antiradical activity. Journal of Food Research, 2019. 29(2): p. 29-45.
23. Karami, P., M. Zandi, and A. Ganjloo, Mathematical, fuzzy logic and artificial neural network modeling of extraction kinetics of essential oil from aerial parts of yarrow (Achillea millefolium L.) using ohmic-assisted hydrodistillation. Journal of food science and technology (Iran), 2022. 19(123): p. 341-354.
24. Zandi, M., A. Ganjloo, and M. Bimakr, Kinetic modeling and optimization of musk willow (Salix aegyptiaca L.) essential oil extraction process of using ultrasound assisted hydrodistillation. Journal of food science and technology (Iran), 2022. 18(121): p. 93-106.
25. Babu, G.D.K. and B. Singh, Simulation of Eucalyptus cinerea oil distillation: A study on optimization of 1, 8-cineole production. Biochemical Engineering Journal, 2009. 44(2-3): p. 226-231.
26. Stanković, M.Z., et al., The effect of hydrodistillation technique on the yield and composition of essential oil from the seed of Petroselinum crispum (Mill.) Nym. ex. AW Hill. Hemijska industrija, 2004. 58(9): p. 409-412.
27. Goyeneche, R., et al., Supercritical CO2 extraction of bioactive compounds from radish leaves: Yield, antioxidant capacity and cytotoxicity. The Journal of Supercritical Fluids, 2018. 135: p. 78-83.
28. Sharifi, N., S. Mahernia, and M. Amanlou, Comparison of different methods in quercetin extraction from leaves of Raphanus sativus L. Pharmaceutical Sciences, 2016. 23(1): p. 59-65.
29. Khan, R.S., S.S. Khan, and R. Siddique, Radish (Raphanus Sativus): Potential antioxidant role of bioactive compounds extracted from radish leaves-A review. Pakistan Journal of Medical & Health Sciences, 2022. 16(09): p. 2-2.