افزایش عمر نگهداری جوانه گندم پروبیوتیک حاوی باسیلوس بادیوس به کمک صمغ زانتان به روش انکپسولاسیون از نوع خشک کن انجمادی

نویسندگان
1 گروه علوم و صنایع غذایی، واحد اصفهان (خوراسگان،) دانشگاه آزاد اسلامی، اصفهان، ایران
2 بانک میکروارگانیسم ها، مرکز ملی ذخایر ژنتیکی و زیستی ایران، جهاد دانشگاهی، تهران، ایران
چکیده
جوانه گندم محصول جانبی آسیاب گندم با مواد مغذی بالا است، اما به دلیل فعالیت شدید لیپاز و لیپوکسی­ژناز، ماندگاری کوتاهی داشته و مصرف بهینه بسیار محدودی دارد. از این­رو، در پژوهش حاضر، جهت افزایش عمر نگهداری جوانه گندم پروبیوتیک حاوی باسیلوس بادیوس از روش انکپسولاسیون از نوع خشک کن انجمادی استفاده شد و تاثیر استفاده از صمغ زانتان : مالتوکسترین در نسبت­های مختلف 3/0 : 1 ، 1/0 : 1 و 03/0 : 1 به عنوان دیواره کپسول­ها بر خواص آنتی­اکسیدانی و ویژگی­های فیزیکوشیمیایی جوانه گندم پروبیوتیک طی 360 روز نگهداری، بررسی شد. سه تیمار شاهد، حاوی همان نسبت­های صمغ­های استفاده شده برای تیمارها، بدون باکتری پروبیوتیک نیز تهیه گردید. جهت مقایسات بهتر و اثر تیمارهای اعمال شده، یک نمونه جوانه گندم خالص نیز در روز اول، صدو هشتاد و سیصدو شصتم همراه با نمونه­های کپسوله شده مورد بررسی و آزمون قرار گرفت. آزمون­ها در قالب طرح کاملا تصادفی انجام شد و تیمارها با استفاده از نرم افزار اس پی اس اس و مقایسه میانگین‌‌ها با آزمون چند دامنه‌ای دانکن در سطح اطمینان 99 درصد ارزیابی شدند. نتایج این تحقیق نشان داد که کاربرد صمغ زانتان و مالتودکسترین بعنوان مواد دیواره، سبب بهبود ویژگی­های آنتی اکسیدانی در جوانه گندم کپسوله شده گردید. استفاده از باکتری باسیلوس بادیوس به عنوان پروبیوتیک، باعث کاهش معنی­دار شاخص­های اکسایشی در جوانه گندم شد (01/0>P). باکتری باسیلوس بادیوس بعنوان پروبیوتیکی قوی می­تواند بر افزایش زمان نگهداری جوانه گندم کپسول شده تاثیرگذار باشد. همچنین صمغ زانتان به عنوان ماده­ای مناسب جهت انکپسولاسیون جوانه گندم جهت افزایش ماندگاری پیشنهاد می­شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Prolonging the Shelf-life of Probiotic Wheat Germ Containing Bacillus badius with Xanthan Gum by Freeze-Dried Encapsulation Method

نویسندگان English

Asal Kadkhodaei 1
Mohammad Goli 1
Mohaddaseh Ramezani 2
1 Department of Food Science & Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
چکیده English

Wheat germ is a high-nutrient byproduct of wheat milling, however it has a short shelf life and extremely restricted ideal intake due to the intensive activities of lipase and lipoxygenase. In order to increase the storage life of probiotic wheat germ containing Bacillus badius, the freeze drying method was used in this study, and the effect of using xanthan gum: maltoxtrin in different ratios of 0.3:1, 0.1:1, and 0.03:1 as the capsule wall on antioxidant properties and physicochemical characteristics of probiotic wheat germ during 360 days of storage was investigated. Three control treatments were also produced without probiotic bacteria and had the same quantities of gums as the treatments. A pure wheat germ sample was also analyzed on the first day, 180 and 360, along with the encapsulated samples, for better comparisons and the influence of applied treatments. The experiments used a completely random design, and the treatments were analyzed using SPSS software and comparing the averages using Duncan's multi-range test at the 99% confidence level. The use of xanthan gum and maltodextrin as wall materials increased the antioxidant qualities in encapsulated wheat germ, according to the findings of this study. The introduction of Bacillus badius bacteria as a probiotic resulted in a substantial decrease in oxidation indices in wheat germ (P<0.01). In general, it can be stated that Bacillus badius bacteria, as a powerful probiotic, can extend the storage time of encapsulated wheat germ. Furthermore, xanthan gum is proposed as a good material for wheat germ encapsulation to enhance shelf life.

کلیدواژه‌ها English

Antioxidant properties
freeze dryer
bacillus badius
probiotic wheat germ
increased shelf life
1. Gomez, M., Gonzalez, J., and Oliete, B. (2011). Effect of extruded wheat germ on dough rheology and bread quality. Food and Bioprocess Technology, 5: 2409-2418.
2. Meriles, S.P., Steffolani, M.E., Penci, M.C., Curet, S., Boillereaux, L., and Ribotta, P.D. (2022). Effects of low‐temperature microwave treatment of wheat germ. Journal of the Science of Food and Agriculture, 102(6): 2538-2544.
3. Zhou, K., Laux, J.J., and Yu, L. (2004). Comparison of swiss red wheat grain and fraction for their antioxidant properties. Journal of Agricultural and Food Chemistry, 52(5): 1118-1123.
4. Rizzello, C.G., Nionelli, L., Coda, R., De Angelis, M., and Gobbetti, M. (2010). Effect of sourdough fermentation on stabilization, and chemical and nutritional characteristics of wheat germ. Food Chemistry, 119: 1079-1089.
5. Mobus, K., Siepmann, J., and Bodmeier, R. (2012). Zinc-alginate microparticles for controlled pulmonary delivery of proteins prepared by spray-drying. European Journal of Pharmaceutics and Biopharmaceutics, 81: 121-130.
6. Sosnik, A., and Seremeta, K.P. (2015). Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, 223: 40-54.
7. Farias-Cervantes, V.S., Chavez-Rodriguez, A., Garcia-Salcedo, P.A., Garcia-Lopez, P.M., Casas-Solis, J., and Andrade-Gonzalez, I. (2018). Antimicrobial effect and in vitro release of anthocyanins from berries and roselle obtained via microencapsulation by spray drying. Journal of Food Processing and Preservation, 42: e13713.
8. Rajkowski, K.T. and Bennett, R.W. (2003). Bacillus cereus, In: Miliotis, M.D. and Bier, J.W. (Editors), International handbook of foodborne pathogens, Marcel Dekker Inc, pp: 27-39.
9. Mohammed, Y., Lee, B., Kang, Z., and Du, G. (2014). Development of a two-step cultivation strategy for the production of vitamin B12 by Bacillus megaterium. Microb Cell Fact 13, 102.
10. Tanaka, K., Takanaka, S., and Yoshida, K. (2014). A second-generation Bacillus cell factory for rare inositol production. Bioengineered, 5(5):331-334.
11. Elshaghabee, F.M.F., Rokana, N., Gulhane, R.D., Sharma, C., and Panwar, H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol, 8:1490.
12. Agregan, R., Munekata, P.E., Domínguez, R., Carballo, J., Franco, D., and Lorenzoa, J.M. (2017). Proximate composition, phenolic contentand in vitro antioxidant activity of aqueous extracts of the sea weeds Ascophyllum nodosum, Bifurcaria bifurcata and Fucus vesiculosus. Effect of addition of the extracts on the oxidative stability of canola oil under accelerated storage conditions. Food Research International, 99 (3): 986-994.
13. Iranian National Standardization Organization, Standard No. 4093. (2007). Measurement of anisidine number. First revision.
14. Iranian National Standardization Organization, Standard No. 4178. (1998). Measurement of acidity in edible oils and fats. First Edition.
15. Iranian National Standardization Organization, Standard No. 10494. (2016). Vegetable oils and fats - measurement of 2- thiobarbituric acid by direct method. First edition.
16. Iranian National Standardization Organization, Standard No. 3-10899. (2013). Microbioligy of food and animal feeding stuffs - enumeration of Yeast and mould-Colony count techni in products with water activity Less than or equal to 0/60. First edition.
17. Karadeniz, M., Sahin, S., and Sumnu, G. (2018). Enhancement of storage stability of wheat germ oil by encapsulation. Industrial Crops and Products, 114: 14-18.
18. Rubilar, M., Morales, E., Contreras, K., Ceballos, C., Acevedo, F., Villarroel, M., and Shene, C. (2012). Development of a soup powder enriched with microencapsulated linseed oil as a source of omega‐3 fatty acids. European Journal of Lipid Science and Technology, 114(4): 423-433.
19. Can Karaca, A., Low, N., and Nickerson, M. (2013). Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein–maltodextrin microcapsule preparation. Journal of agricultural and food chemistry, 61(21): 5148-5155.
20. Durante, M., Lenucci, M.S., Laddomada, B., Mita, G., and Caretto, S. (2012). Effects of sodium alginate bead encapsulation on the storage stability of durum wheat (Triticum durum Desf.) bran oil extracted by supercritical CO2. Journal of Agricultural and Food Chemistry, 60(42): 10689-10695.
21. Osborn, H.T., and Akoh, C.C. 2004. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions. Food Chemistry, 84: 451-456.
22. Choo, W.S., Birch, J., and Dufour, JP. (2007). Physicochemical and quality characteristics of cold-pressed flaxseed oils. Journal of Food Composition and Analysis, 20: 202-211.
23. Wanasundara, U.N., Shahidi, F., and Jablonskib, C.R. (1995). Comparison of standard and NMR methodologies for assessment of oxidative stability of canola and soybean oils. Food Chemistry, 52: 249-253.
24. Sun, C., and Gunasekaran, S. (2009). Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 23(1): 165-174.
25. Sakai, K., Nisijima, H., Ikenaga, Y., Wakayama, M., and Moriguchi, M. (2000). Purification and characterization of nitrite-oxidizing enzyme from heterotrophic Bacillus badius I-73, with special concern to catalase. Bioscience, Biotechnology, and Biochemistry, 64(12): 2727-2730.