مقایسه ویژگی‌های آنتی‌اکسیدانی کلروفیل استخراج‌شده از گیاه یونجه (.Medicago sativa L) با بهره‌گیری از روش‌های استخراج آنزیمی و فراصوت

نویسندگان
1 واحد آیت ا… آملی، دانشگاه آزاد اسلامی
2 پژوهشکده اکولوژی دریای خزر، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی
3 دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده
امروزه از رنگ­دانه­ های طبیعی به ­صورت گسترده ­ای در صنایع غذایی، آرایشی و بهداشتی استفاده می­گردد و طی سال­های اخیر تحقیقات متعددی پیرامون روش­های استخراج و بررسی خواص رنگ­دانه های طبیعی انجام یافت. هدف از این تحقیق نیز مقایسه ویژگی­های آنتی­اکسیدانی کلروفیل استخراج­شده از گیاه یونجه (.Medicago sativa L) با بهره­گیری از روش­های استخراج آنزیمی و فراصوت می­باشد. فعالیت آنتی‌اکسیدانی با سه روش مهار رادیکال‌های آزاد DPPH و ABTS و قدرت احیاکنندگی آهن (FRAP) انجام گرفت. نتایج نشان داد که غلظت کلروفیل a در گیاه یونجه بیشتر از غلظت کلروفیل b بوده است و همچنین روش آنزیمی نیز عملکرد بالاتری در استخراج کلروفیل نشان داده است. علاوه براین غلظت­های بالاتر عصاره یونجه فعالیت آنتی­اکسیدانی بیشتری در مهار رادیکال آزاد DPPH و نیز قدرت احیاکنندگی آهن نشان داد (05/0>p.). همچنین، با افزایش غلظت عصاره، مقدار ترکیبات فنلی کل و ترکیبات فلاونوئیدی افزایش یافت (05/0>p.). به دلیل عملکرد مطلوب­تر، از کلروفیل استخراج­شده به روش آنزیمی در ارزیابی خواص آنتی­اکسیدانی یعنی مهار رادیکال­های آزاد DPPH و ATBS و نیز قدرت احیاکنندگی آهن استفاده گردید و با افزایش غلظت کلروفیل نیز خواص آنتی­ اکسیدانی افزایش یافت. با توجه به اثر آنتی­اکسیدانی مطلوب کلروفیل استخراج ­شده به روش آنزیمی از گیاه یونجه می­ توان کاربرد آن را در صنایع غذایی، دارویی و بهداشتی مورد ارزیابی قرار داد و با استفاده از این تکنیک سامانه­ های استخراجی در مقیاس صنعتی طراحی نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of antioxidant properties of chlorophyll extracted from alfalfa (Medicago sativa L.) using enzymatic and ultrasonic extraction methods

نویسندگان English

Amir Ahmadi 1
Seyed-Ahmad Shahidi 1
Reza Safari 2
Ali Motamedzadegan 3
Azade Ghorbani-HasanSaraei 1
1 Ayatollah Amoli Branch, Islamic Azad University
2 Caspian Sea Ecology Research Center (CSERC), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO)
3 Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University
چکیده English

Nowadays, natural pigments are widely used in the food, cosmetics and sanitation industries. In recent years, numerous researches have been done on the methods of extraction and evaluation of the properties of natural pigments. The purpose of this study is comparison of enzymatic and ultrasonic extraction methods for the antioxidant properties of chlorophyll extracted from alfalfa (Medicago sativa L.). Antioxidant activity was performed by three methods including DPPH and ABTS free radicals scavenging and ferric reducing antioxidant power (FRAP). The results show that the concentration of chlorophyll a in alfalfa is higher than that of chlorophyll b and also the enzymatic method demonstrates higher yield in chlorophyll extraction. In addition, higher concentrations of alfalfa extract showed higher antioxidant activity in inhibiting DPPH free radicals and ferric reducing antioxidant power (p <0.05). Also, with increasing the extract concentration, total phenolic compounds and flavonoid compounds increase (p <0.05). Due to the better performance, the enzymatic extracted chlorophyll was used to evaluate the antioxidant properties, inhibition of free radicals DPPH and ATBS and ferric reducing antioxidant power and the result shows the higher chlorophyll concentration, the higher antioxidant properties. Due to the appropriate antioxidant effect of alfalfa chlorophyll extracted by enzymatic method, its application in food, pharmaceutical and health industries can be evaluated and industrial scale extraction systems can be designed using this technique.

کلیدواژه‌ها English

Alfalfa
Antioxidant properties
Chlorophyll
Enzymatic method
Ultrasonic
[1] Shahidi, S. A. (2022). Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: Optimization by response surface methodology. Food and Chemical Toxicology, 163, 112981.
[2] Kulshreshtha, M., Goswami, M., Rao, C., Ashwlayan, V., & Yadav, S. (2011). Estimation of antioxidant potential of aqueous extract of Ficus bengalensis leaf on gastric ulcer. International Journal of Pharmaceutical Sciences Review and Research, 9(1), 122-126.
[3] Sahreen, S., Khan, M. R., & Khan, R. A. (2010). Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food chemistry, 122(4), 1205-1211.
[4] Karimi, F., Hamidian, Y., Behrouzifar, F., Mostafazadeh, R., Ghorbani-HasanSaraei, A., Alizadeh, M., ... & Asrami, P. N. (2022). An applicable method for extraction of whole seeds protein and its determination through Bradford's method. Food and Chemical Toxicology, 164, 113053.
[5] Ahmadi, A., Shahidi, S. A., Safari, R., Motamedzadegan, A., & Ghorbani-HasanSaraei, A. (2022). Evaluation of stability and antibacterial properties of extracted chlorophyll from alfalfa (Medicago sativa L.). Food and Chemical Toxicology, 163, 112980.
[6] Arjmandi, J., Shahidi, S. A., Ghorbani-HasanSaraei, A., Limooei, M. B., & Raeisi, S. N. (2022). Sudan I monitoring as a hazardous azo dye using an electroanalytical tool amplified with NiO/SWCNTs-ionic liquid catalysts. Chemosphere, 309, 136673.
[7] Moss, B. W. (2002). The chemistry of food colour. Colour in food: Improving quality, 145-178.
[8] Nezhad, H. M., Shahidi, S. A., & Bijad, M. (2018). Fabrication of a nanostructure voltammetric sensor for carmoisine analysis as a food dye additive. Anal Bioanal Electrochem, 10, 220-229.
[9] Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in food science & technology, 52, 1-15.
[10] Mehdipoor Damiri, G. R., Motamedzadegan, A., Safari, R., Shahidi, S. A., & Ghorbani, A. (2021). Evaluation of stability, physicochemical and antioxidant properties of extracted chlorophyll from Persian clover (Trifolium resupinatum L.). Journal of Food Measurement and Characterization, 15, 327-340.
[11] Roy, A., Sitalakshmi, T., Geetha, R. V., Lakshmi, T., & Priya, V. V. (2011). In Vitro Antioxidant and Free Radical Scavenging Activity of the Ethanolic Extract of Dioscorea villosa (Wild Yam) Tubers. Drug Invention Today, 3(9).
[12] Nazari, Z., Honarvar, M., & Dianat, M. (2021). Evaluation of the effects of extraction method, duration and harvesting time on qualitative and quantitative features of Medicago sativa. Journal of Food Measurement and Characterization, 15, 4868-4875.
[13] Al-Snafi, A. E., Khadem, H. S., Al-Saedy, H. A., Alqahtani, A. M., & El-Saber, G. (2021). A review on Medicago sativa: A potential medicinal plant. Int. J. Biol. Pharm. Sci. Arch, 1, 22-33.
[14] Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P., & Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant physiology and Biochemistry, 47(7), 570-577.
[15] Mehdizadeh, A., Shahidi, S. A., Shariatifar, N., Shiran, M., & Ghorbani-HasanSaraei, A. (2022). Physicochemical characteristics and antioxidant activity of the chitosan/zein films incorporated with Pulicaria gnaphalodes L. extract-loaded nanoliposomes. Journal of Food Measurement and Characterization, 1-11.
[16] Lotfi, L., Kalbasi-Ashtari, A., Hamedi, M., & Ghorbani, F. (2015). Effects of sulfur water extraction on anthocyanins properties of tepals in flower of saffron (Crocus sativus L). Journal of food science and technology, 52, 813-821.
[17] Choi, W. Y., & Lee, H. Y. (2017). Enhancement of chlorophyll a production from marine Spirulina maxima by an optimized ultrasonic extraction process. Applied Sciences, 8(1), 26.
[18] Iranian National Standardization Organization. (2019). Vegetable fats and oilsDetermination of the degradation products of chlorophylls a and a’ (pheophytins a, a’ and pyropheophytins) Amd No.1. 14838-A1.
[19] Esmaeilzadeh Kenari, R., Mohsenzadeh, F., & Amiri, Z. R. (2014). Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound‐assisted extraction methods. Food science & nutrition, 2(4), 426-435.
[20] Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of agricultural and food chemistry, 50(10), 3010-3014.
[21] Hosseini, F., Motamedzadegan, A., Raeisi, S. N., & Rahaiee, S. (2022). Antioxidant activity of nanoencapsulated chia (Salvia hispanica L.) seed extract and its application to manufacture a functional cheese. Food Science & Nutrition. DOI: 10.1002/fsn3.3169.
[22] He, J., Huang, B., Ban, X., Tian, J., Zhu, L., & Wang, Y. (2012). In vitro and in vivo antioxidant activity of the ethanolic extract from Meconopsis quintuplinervia. Journal of ethnopharmacology, 141(1), 104-110.
[23] Then, M. (2003). Examination on antioxidant activity in the greater celandine (Chelidonium majus L.) extracts by FRAP method. Acta Biologica Szegediensis, 47(1-4), 115-117.
[24] Saberian, H., Hosseini, F., & Bolourian, Sh. (2017). Optimizing the extraction condition of chlorophyll from Alfalfa and investigating its qualitative and quantitative properties in comparison to different plant resources. Journal of food science and technology (Iran), 71(14), 47-57. (In Persian).
[25] Dias, M. C., Figueiredo, P., Duarte, I. F., Gil, A. M., & Santos, C. (2014). Different responses of young and expanded lettuce leaves to fungicide Mancozeb: chlorophyll fluorescence, lipid peroxidation, pigments and proline content. Photosynthetica, 52(1), 148-151.
[26] Kong, W., Liu, N., Zhang, J., Yang, Q., Hua, S., Song, H., & Xia, C. (2014). Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. Journal of food science and technology, 51, 2006-2013.
[27] Bora, K. S., & Sharma, A. (2011). Evaluation of antioxidant and cerebroprotective effect of Medicago sativa Linn. against ischemia and reperfusion insult. Evidence-Based Complementary and Alternative Medicine, 2011. DOI: 10.1093/ecam/neq019.
[28] Al-Dosari, M. S. (2012). In vitro and in vivo antioxidant activity of alfalfa (Medicago sativa L.) on carbon tetrachloride intoxicated rats. The American journal of Chinese medicine, 40(04), 779-793.
[29] Rana, M. G., Katbamna, R. V., Padhya, A. A., Dudhrejiya, A. D., Jivani, N. P., & Sheth, N. R. (2010). In vitro antioxidant and free radical scavenging studies of alcoholic extract of Medicago sativa L. Romanian Journal of Biology-Plant Biology, 55(1), 15-22.
[30] Kamali M, Khosroyar S, Jalilvand M. (2014). Evaluation of phenolic, flavonoids, anthocyanin contents and antioxidant capacities of different extracts of aerial parts of Dracocephalum kotschyi. North Khorasan University of Medical Sciences; 6 (3) :627-634.
[31] Shariatifar N. (2012). Quantitative and qualitative study of phenolic compounds and antioxidant activity of plant pulicaria gnaphalodes. Internal Medicine Today, 17 (4) :35-41.
[32] Bahramikia, S., & Yazdanparast, R. (2008). Antioxidant and free radical scavenging activities of different fractions of Anethum graveolens leaves using in vitro models. Pharmacol online, 2, 219-33.
[33] Gulluce, M., Sahin, F., Sokmen, M. Ü. N. E. V. V. E. R., Ozer, H., Daferera, D., Sokmen, A. T. A. L. A. Y., ... & Ozkan, H. İ. C. A. B. İ. (2007). Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food chemistry, 103(4), 1449-1456.
[34] Karimi-Maleh, H., Darabi, R., Karimi, F., Karaman, C., Shahidi, S. A., Zare, N., ... & Rajendran, S. (2023). State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. Environmental Research, 115338.