[1] Cazón, P., Velazquez, G., Ramírez, J.A., Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids, 68, 136-48.
[2] Beikzadeh, S., Khezerlou, A., Jafari, S.M., Pilevar, Z., Mortazavian, A.M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 280, 102164.
[3] Jouki, M., Tabatabaei Yazdi, F., Mortazavi, S.A., Koocheki, A., (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
[4] Dick, M., Haas Costa, T.M., Gomaa, A., Subirade, M., de Oliveira Rios, A., & Flôres, S.H., (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205.
[5] Sadeghi-Varkani, A., Emam-Djomeh, Z., Askari, G., (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 141, 1110-1119.
[6] Thessrimuang, N., Prachayawarakorn, J., (2019). Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage. Journal of Food Science and Agriculture, 99, 5508-5515.
[7] Behbahani, B. A., Yazdi, F. T., Shahidi, F., Hesarinejad, M. A., Mortazavi, S. A., Mohebbi, M. (2017). Plantago major seed mucilage: Optimization of extraction and some physicochemical and rheological aspects. Carbohydrate Polymers, 155, 68–77.
[8] Niknam, R., Ghanbarzadeh, B., Hamishehkar, H. (2019). Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polymer Testing, 77, 105868.
[9] Gahruie, H. H., Eskandari, M. H., Van der Meeren, P., Hosseini, S. M. H. (2019). Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate Polymers, 219, 155–161.
[10] Shahmohammadi Jebel, F., Almasi, H., (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers, 149, 8–19.
[11] Li, L. H., Deng, J. C., Deng, H. R., Liu, Z. L., Li, X. L. (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal, 160, 378–382.
[12] Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies, 11, 742-748.
[13] Ghanbarzadeh, B., Oleyaei, A., Almasi, H. (2015). Nano-structured materials utilized in natural biopolymer films for food packaging applications. Critical Reviews in Food Science and Nutrition, 55(12), 1699-1723.
[14] Angles, M.N., Dufrense, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33, 8344-8353.
[15] ASTM. (1995). Standard test methods for water vapor transmission of material. E96-95. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
[16] Fathi, N., Almasi, H., Pirouzifard, M. K. (2019). Sesame protein isolate based bionanocomposite films incorporated with TiO2 nanoparticles: Study on morphological, physical and photocatalytic properties. Polymer Testing, 77, 105919.
[17] ASTM. (1996). Standard test methods for tensile properties of thin plastic sheeting. D882-91. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
[18] Qi, G., Li, N., Sun, X. S., Shi, Y., Wang, D. (2016). Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers, 152, 747–754.
[19] Memiş, S., Tornuk, F., Bozkurt, F., Durak, M. Z. (2017). Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. International Journal of Biological Macromolecules, 103, 669–675.
[20] Mujtaba, M., Akyuz, L., Koc, B., Kaya, M., Ilk, S., Cansaran-Duman, D., Martinez, A.S., Cakmak, Y.S., Labidi, J., Boufi, S., (2019). Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers, Food Hydrocolloids, 89, 20-28.
[21] Prado, N.S., da Silva, I.S.V., Silva, T.A.L., de Oliveira, W.J., Motta, L.A.C., Pasquini, D., Otaguro, H. (2018). Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Materials Research, 21(6), 20180134.
[22] Azizi, S., Bin Ahmad, M., Zobir Hussein, M., Azowa Ibrahim, N., Namvar, F. (2014). Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler. International Journal of Nanomedicine, 9, 1909-1917.
[23] Souza, V.G.L., Rodrigues, C., Valente, S., Pimenta, C., Pires, J.R.A., Alves, M.M., Santos, C.F., Coelhoso, I.M., Fernando, A.L., (2020). Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings, 10, 110-121.
[24] Babaei-Ghazvini, A., Shahabi-Ghahfarrokhi, I., Goudarzi, V. (2018). Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization. Food Packaging and Shelf Life, 16, 103-111.
[25] Gopi, S., Amalraj, A., Jude, S., Thomas, S., Guo, Q. (2019). Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. Journal of the Taiwan Institute of Chemical Engineers, 96, 664-671.
[26] Razavi, S.M.A., Mohammad Amini, A., Zahedi, Y., (2015). Characterization of a new biodegradable edible film based on sage seed gum: Influence of plasticizer type and concentration. Food Hydrocolloids, 43, 290-298.
[27] Jahed, E., Alizadeh Khaledabad, M., Rezazad Bari, M., Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. Reactive and Functional Polymers, 117, 70-80.
[28] Rose Joseph, M., Gopakumar, P.A., Maria, H.J., Vishnu, R., Kalarikkal, N., Thomas, S., Vidyasagaran, K., Anoop, E.V., (2012). Development and characterization of cellulose nanofiber reinforced Acacia nilotica gum nanocomposite. Industrial Crops & Products, 161, 113180.
[29] Ranjbaryan, S., Pourfathi, B., Almasi, H., (2019). Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil. Food Packaging and Shelf Life, 21, 100341.
[30] Jouki, M., Khazaei, N., Ghasemlou, M., Hadinezhad, M., (2013b). Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers, 96, 39- 46.
[31] Shankar, S., Teng, X., Li, G., & Rhim, J. W., (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 117, 341-349.
[32] Vicentini, D. S., Smania, A., Laranjeira, M. C. M. (2010). Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Materials Science and Engineering C, 30, 503–508.
[33] Mujtaba, M., Koc, B., Salaberria, A.M., Ilk, S., Cansaran-Duman, D., Akyuz, L., Cakmak, Y.S., Kaya, M., Khawar, H.M., Labidi, J., Boufi, S., (2019). Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules, 133, 663-673.
[34] Liu, Z., Lin, D., Lopez-Sanchez, P., Yang, X., (2020). Characterization of bacteria cellulose nanofibers reinforced edible films based on konjac glucomannan. International Journal of Biological Macromolecules, 145, 634-645.
[35] Tibolla, H., Czaikoski, A., Pelissari, F.M., Menegalli, F.C., Cunha, R.L., (2020). Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. International Journal of Biological Macromolecules, 161, 132-146.
[36] Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., Yousefi, H. (2015b). Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. International Journal of Biological Macromolecules, 72, 41-46.