مطالعه تأثیر نانوذرات اکسید روی و نانوالیاف سلولز بر روی خصوصیات مورفولوژیکی، ساختاری، حرارتی، مکانیکی و بازدارندگی فیلم نانوکامپوزیت برپایه موسیلاژ دانه بارهنگ (Plantago major L.)

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه آفاق، ارومیه
2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ایران
چکیده
هدف از این پژوهش تولید فیلم نانوکامپوزیت برپایه موسیلاژ دانه بارهنگ بود. نانوذرات اکسید روی ZnO و نانوفیبر سلولز CNF هرکدام در دو غلظت 4 و 8 درصد به منظور تقویت خصوصیات مورفولوژیکی و ساختاری، حرارتی، بازدارندگی به بخار آب و خواص مکانیکی فیلم ها استفاده شد. براساس نتایج FTIR برقراری پیوندهای شیمیایی جدید بین نانوذرات و پلی ساکارید موسیلاژ تایید شد. آزمون XRD نشان داد که ZnO بیشتر از CNF ساختار نیمه بلورین فیلم بارهنگ را تحت تأثیر قرار می دهد. بررسی مورفولوژی فیلم با SEM سطح صاف فیلم شاهد را نشان داد اما با افزودن نانوذرات، زبری و ناهمگونی سطح بیشتر شد. آزمون TGA تقویت مقاومت حرارتی در اثر افزودن نانوذرات را اثبات کرد. اما تاثیر CNF در تقویت خصوصیات حرارتی بیشتر از ZnO بود. افزودن نانوذرات در غلظت 4 درصد تأثیری بر روی ضخامت فیلم ها نداشت اما با افزایش غلظت ضخامت بیشتر شد. محتوای رطوبت و میزان جذب رطوبت فیلم ها با افزودن نانوتقویت کننده ها کاهش یافت. نفوذپذیری به بخار آب فیلم به غلظت نانومواد وابسته بود و در غلظت 4 درصد کاهش معنی داری داشت اما در غلظت 8 درصد به دلیل توده شدن و ماهیت آبدوست نانومواد مجددا بیشتر شد. زاویه تماس سطح فیلم ها با آب در اثر افزودن zNo بیشتر شد اما CNF باعث کاهش این زاویه شد. CNF در مقایسه با ZnO عملکرد بهتری روی خصوصیات مکانیکی داشت و بیشترین تأثیر را در افزایش استحکام کششی، مدول الاستیک و درصد ازدیاد طول نشان داد. بطور کلی نتایج این تحقیق نشان داد که فیلم نانوکامپوزیت موسیلاژ دانه بارهنگ حاوی نانوتقویت کننده های آلی و معدنی از خواص فیزیکوشیمیایی مطلوبی برخوردار بوده و میتواند به عنوان یک گزینه مناسب در بسته بندی مواد غذایی بکار رود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Studying the effect of zinc oxide nanoparticles and cellulose nanofiber on the morphological, structural, thermal, mechanical and barrier properties of nanocomposite film based on Barhang (Plantago major L) mucilage

نویسندگان English

Leila Shirazi 1
Hadi Almasi 2
1 Food science and technology, Afagh University, Urmia, Iran
2 Department of food science and technology, Faculty of agriculture, Urmia University, Iran
چکیده English

The aim of this research was to prepare a nanocomposite film based on Barhang (Plantago major L) seed gum. Zinc oxide (ZnO) and cellulose nanofiber (CNF) nanoparticles at the concentrations of 4 and 8% w/w were incorporated for improving the morphological, structural, thermal, water vapor permeability and mechanical properties of films. The FT-IR results confirmed the occurring of new interactions between nanoparticles and mucilage polysaccharides. XRD results indicated that the effect of ZnO on semi-crystalline structure of Barhang film is higher than the effect of CNF. The neat film has a smoth surface, but the roughness increased by addition of nanoparticles. According to TGA results, the thermal stability of films was affected by incorporation of nanoparticles, but the effect of CNF on improving the thermal stability of film was more than ZnO. The addition of nanoparticles at the concentration of 4% had no effect on the thickness of films but by increasing to 8%, the thickness increased. Moisture content and moisture absorption of films was also decreased significantly by incorporation of nanoparticles. The water vapor permeability of films was dependent on the concentration of nanoparticles and at 4%, it decreased significantly but at 8% concentration, the permeability increased again due to the aggregation of nanoparticles and their hydrophilic nature. The water contact angle of films’ surface increased by addition of ZnO but the CNF caused to decrease this value due to its hydrophilicity. The effect of CNF on improving the mechanical properties of films was better than ZnO. The CNF had the most effect on increasing tensile strength, elastic modulus and elongation to break. In general, this research indicated that by using organic and inorganic nanoreinforcements, the improving of the properties of Barhang seed gum based films is possible and the effect of CNF is more than ZnO.

کلیدواژه‌ها English

Nanocomposite film
Nanoreinforcement
Water vapor permeability
Mechanical strength
morphology
Barhang seed mucilage
[1] Cazón, P., Velazquez, G., Ramírez, J.A., Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids, 68, 136-48.
[2] Beikzadeh, S., Khezerlou, A., Jafari, S.M., Pilevar, Z., Mortazavian, A.M. (2020). Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Advances in Colloid and Interface Science, 280, 102164.
[3] Jouki, M., Tabatabaei Yazdi, F., Mortazavi, S.A., Koocheki, A., (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
[4] Dick, M., Haas Costa, T.M., Gomaa, A., Subirade, M., de Oliveira Rios, A., & Flôres, S.H., (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205.
[5] Sadeghi-Varkani, A., Emam-Djomeh, Z., Askari, G., (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 141, 1110-1119.
[6] Thessrimuang, N., Prachayawarakorn, J., (2019). Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage. Journal of Food Science and Agriculture, 99, 5508-5515.
[7] Behbahani, B. A., Yazdi, F. T., Shahidi, F., Hesarinejad, M. A., Mortazavi, S. A., Mohebbi, M. (2017). Plantago major seed mucilage: Optimization of extraction and some physicochemical and rheological aspects. Carbohydrate Polymers, 155, 68–77.
[8] Niknam, R., Ghanbarzadeh, B., Hamishehkar, H. (2019). Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polymer Testing, 77, 105868.
[9] Gahruie, H. H., Eskandari, M. H., Van der Meeren, P., Hosseini, S. M. H. (2019). Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate Polymers, 219, 155–161.
[10] Shahmohammadi Jebel, F., Almasi, H., (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers, 149, 8–19.
[11] Li, L. H., Deng, J. C., Deng, H. R., Liu, Z. L., Li, X. L. (2010). Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal, 160, 378–382.
[12] Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science and Emerging Technologies, 11, 742-748.
[13] Ghanbarzadeh, B., Oleyaei, A., Almasi, H. (2015). Nano-structured materials utilized in natural biopolymer films for food packaging applications. Critical Reviews in Food Science and Nutrition, 55(12), 1699-1723.
[14] Angles, M.N., Dufrense, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33, 8344-8353.
[15] ASTM. (1995). Standard test methods for water vapor transmission of material. E96-95. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
[16] Fathi, N., Almasi, H., Pirouzifard, M. K. (2019). Sesame protein isolate based bionanocomposite films incorporated with TiO2 nanoparticles: Study on morphological, physical and photocatalytic properties. Polymer Testing, 77, 105919.
[17] ASTM. (1996). Standard test methods for tensile properties of thin plastic sheeting. D882-91. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
[18] Qi, G., Li, N., Sun, X. S., Shi, Y., Wang, D. (2016). Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers, 152, 747–754.
[19] Memiş, S., Tornuk, F., Bozkurt, F., Durak, M. Z. (2017). Production and characterization of a new biodegradable fenugreek seed gum based active nanocomposite film reinforced with nanoclays. International Journal of Biological Macromolecules, 103, 669–675.
[20] Mujtaba, M., Akyuz, L., Koc, B., Kaya, M., Ilk, S., Cansaran-Duman, D., Martinez, A.S., Cakmak, Y.S., Labidi, J., Boufi, S., (2019). Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers, Food Hydrocolloids, 89, 20-28.
[21] Prado, N.S., da Silva, I.S.V., Silva, T.A.L., de Oliveira, W.J., Motta, L.A.C., Pasquini, D., Otaguro, H. (2018). Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Materials Research, 21(6), 20180134.
[22] Azizi, S., Bin Ahmad, M., Zobir Hussein, M., Azowa Ibrahim, N., Namvar, F. (2014). Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler. International Journal of Nanomedicine, 9, 1909-1917.
[23] Souza, V.G.L., Rodrigues, C., Valente, S., Pimenta, C., Pires, J.R.A., Alves, M.M., Santos, C.F., Coelhoso, I.M., Fernando, A.L., (2020). Eco-friendly ZnO/chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings, 10, 110-121.
[24] Babaei-Ghazvini, A., Shahabi-Ghahfarrokhi, I., Goudarzi, V. (2018). Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization. Food Packaging and Shelf Life, 16, 103-111.
[25] Gopi, S., Amalraj, A., Jude, S., Thomas, S., Guo, Q. (2019). Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. Journal of the Taiwan Institute of Chemical Engineers, 96, 664-671.
[26] Razavi, S.M.A., Mohammad Amini, A., Zahedi, Y., (2015). Characterization of a new biodegradable edible film based on sage seed gum: Influence of plasticizer type and concentration. Food Hydrocolloids, 43, 290-298.
[27] Jahed, E., Alizadeh Khaledabad, M., Rezazad Bari, M., Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. Reactive and Functional Polymers, 117, 70-80.
[28] Rose Joseph, M., Gopakumar, P.A., Maria, H.J., Vishnu, R., Kalarikkal, N., Thomas, S., Vidyasagaran, K., Anoop, E.V., (2012). Development and characterization of cellulose nanofiber reinforced Acacia nilotica gum nanocomposite. Industrial Crops & Products, 161, 113180.
[29] Ranjbaryan, S., Pourfathi, B., Almasi, H., (2019). Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil. Food Packaging and Shelf Life, 21, 100341.
[30] Jouki, M., Khazaei, N., Ghasemlou, M., Hadinezhad, M., (2013b). Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydrate Polymers, 96, 39- 46.
[31] Shankar, S., Teng, X., Li, G., & Rhim, J. W., (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 117, 341-349.
[32] Vicentini, D. S., Smania, A., Laranjeira, M. C. M. (2010). Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Materials Science and Engineering C, 30, 503–508.
[33] Mujtaba, M., Koc, B., Salaberria, A.M., Ilk, S., Cansaran-Duman, D., Akyuz, L., Cakmak, Y.S., Kaya, M., Khawar, H.M., Labidi, J., Boufi, S., (2019). Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules, 133, 663-673.
[34] Liu, Z., Lin, D., Lopez-Sanchez, P., Yang, X., (2020). Characterization of bacteria cellulose nanofibers reinforced edible films based on konjac glucomannan. International Journal of Biological Macromolecules, 145, 634-645.
[35] Tibolla, H., Czaikoski, A., Pelissari, F.M., Menegalli, F.C., Cunha, R.L., (2020). Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. International Journal of Biological Macromolecules, 161, 132-146.
[36] Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., Yousefi, H. (2015b). Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties. International Journal of Biological Macromolecules, 72, 41-46.