تأثیر عطرمایه و عصاره آزاد و ریز پوشانی شده با نانولیپوزوم دارچین بر لیستریا مونوسایتوژنز و اشرشیاکولی تلقیح شده به گوشت چرخ شده گاو

نویسندگان
1 واحد آیت ا… آملی، دانشگاه آزاد اسلامی
2 واحد نور، دانشگاه آزاد اسلامی
3 مرکز تحقیقات سلامت فرآورده های گیاهی و دامی، دانشگاه علوم پزشکی مازندران، ساری، ایران
4 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز
چکیده
نانولیپوزوم‌های عطرمایه و عصاره دارچین با استفاده از روش هیدراتاسیون لایه نازک- فراصوت با استفاده از لسیتین و سه کوسورفکتانت مختلف به نام‌های گلیسرول، تری استین و پروپیلن گلیکول و Tween 80 به‌عنوان سورفکتانت تهیه شدند. نتایج نشان داد که پروپیلن گلیکول منجر به تولید نانولیپوزوم‌هایی با کوچک‌ترین میانگین اندازه ذرات کروی شکل (03/92 نانومتر) و بیشترین مقدار پتانسیل خالص زتا (1/24- میلی‌ولت) شد و به‌عنوان کوسورفکتانت مناسب‌تر انتخاب شد. اگرچه فعالیت ضد باکتریایی عطرمایه و عصاره دارچین بیشتر از آنهایی بود که در نانولیپوزوم‌ها محصور شده بودند، هم عطرمایه دارچین و هم نانولیپوزومهای عصاره فعالیت ضد باکتریایی بالایی در برابر باکتری‌های اشریشیا کلی و لیستریا مونوسایتوژنز نشان دادند. نتایج نشان داد که بر اساس حداقل غلظت‌های بازدارنده و باکتری‌کش نمونه‌های تهیه‌شده، لیستریا مونوسایتوژنز مقاومت بالاتری نسبت به نانولیپوزوم‌های دارچین تهیه شده داشت. به‌منظور مطالعه اثر دارچین در افزایش عمر ماندگاری گوشت چرخ شده، اثر تیمارهای مختلف عصاره، نانو عصاره، عطرمایه، نانو عطرمایه و عصاره به همراه عطرمایه بر ویژگی‌های مختلف گوشت چرخ شده (pH، مقادیر تیوباربیتوریک اسید و بازهای نیتروژنی فرار) و همچنین اثر این تیمارها در کنترل جمعیت میکروبی اشرشیا کلی و لیستریا مونوسایتوژنز تلقیح شده در گوشت چرخ شده بررسی شدند. نتایج نشان داد که عصاره دارچین دارای خاصیت ضد میکروبی و آنتی‌اکسیدانی بوده و نانوکپسوله کردن عصاره سبب افزایش ویژگی‌های ضد میکروبی و آنتی‌اکسیدانی آن می‌شود. بیشترین مقدار pH (58/6)، مقادیر تیوباربیتوریک اسید (MDA/kg 081/0) و بازهای نیتروژنی فرار (mg/100 g 5/72) در تیمار شاهد در روز 9 مشاهده شد. در حالیکه برای نمونه حاوی عطرمایه نانوکپسوله مقدار pH (09/6)، مقادیر تیوباربیتوریک اسید (MDA/kg 002/0) و بازهای نیتروژنی فرار (mg/100 g 5/11) به‌دست آمد. با توجه به نتایج مطالعه حاضر می‌توان از عصاره دارچین نانولیپوزومی برای افزایش ماندگاری گوشت چرخ‌کرده بدون ایجاد اثر نامطلوب و از نظر پایداری اکسیداتیو و فساد میکروبی کم استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of free and encapsulated essential oil and extract of cinnamon with nanoliposome on Listeria monocytogenes and Escherichia coli inoculated into ground beef

نویسندگان English

Shabnam Emami 1
Mohammad Ahmadi 1
Leila Roozbeh Nasiraie 2
Seyed-Ahmad Shahidi 3
Hoda Jafarizadeh‑Malmiri 4
1 Ayatollah Amoli Branch, Islamic Azad University
2 Nour Branch, Islamic Azad University
3 The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
4 Faculty of Chemical Engineering, Sahand University of Technology
چکیده English

The cinnamon essential oil and extract nanoliposomes were prepared through thin layer hydration-ultrasonication technique, using lecithin and three different co-surfactants namely, glycerol, triacetin and propylene glycol, and Tween 80 as surfactant. Results showed that the propylene glycol led to production of the nanoliposomes with the smallest mean particle size (92.03 nm) with spherical-shaped and the greatest net-zeta potential value (-24.1 mV) and was selected as more suitable cosurfactant. Although antibacterial activity of cinnamon essential oil and extract were greater than those were encapsulated into nanoliposomes, both cinnamon essential oil and extract nanoliposomes exhibited high antibacterial activities against Escherichia coli and Listeria monocytogenes bacteria strains. Results indicated that based on the minimum inhibitory and bactericidal concentrations of the prepared samples, L. monocytogenes had higher resistance to the prepared cinnamon nanoliposomes. Then, six treatments including control, extract, nano-extract, essential oil, nano-essential oil and extract- essential oil were used for investigate the effect of cinnamon extract on shelf life of ground beef. Chemical (pH, TBA and TVN) and microbial parameters were detected periodically, as well as the effect of different treatments on ground beef inoculated with Escherichia coli and Listeria monocytogenes were examined. The results showed that the extract has an antimicrobial and antioxidant properties and the nanoencapsulation process enhances the attributes mentioned, so that bacterial spoilage and oxidation process delayed in the ground meet contains nano-extract (p <0.05). The highest value of pH (6.58), TBA (0.081MDA/kg) and TVB-N (72.5mg/100g) in the control treatment on the 9th day was observed. While, the value of pH (6.09), TBA (0.002MDA/kg) and TVB-N (11.5mg/100g) was detected on the 9th day in the nanoencapsulated essence. According to the results obtained in present study nano-liposomal cinnamon extract can be used for extending shelf-life ground beef without causing undesirable effect in terms of oxidative stability and low microbial spoilage.

کلیدواژه‌ها English

Antibacterial activity
Antioxidant activity
Cinnamon
Essential oil
Nanoliposomes
[1] Yu, T., Yao, H., Qi, S., & Wang, J. (2020). GC-MS analysis of volatiles in cinnamon essential oil extracted by different methods. Grasas y Aceites, 71(3), e372-e372.
[2] Bouhdid, S., Abrini, J., Zhiri, A., Espuny, M. J., & Manresa, A. (2009). Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. Journal of applied microbiology, 106(5), 1558-1568.
[3] Toldrá, F. (Ed.). (2022). Lawrie's meat science. Woodhead Publishing.
[4] Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: a critical review. American Journal of Agricultural and Biological Sciences, 6(4), 486-510.
[5] Hui, Y. H. (Ed.). (2012). Handbook of meat and meat processing. CRC press.
[6] Hanlon, K. E., Miller, M. F., Guillen, L. M., Echeverry, A., Dormedy, E., Cemo, B., ... & Brashears, M. M. (2018). Presence of Salmonella and Escherichia coli O157 on the hide, and presence of Salmonella, Escherichia coli O157 and Campylobacter in feces from small-ruminant (goat and lamb) samples collected in the United States, Bahamas and Mexico. Meat science, 135, 1-5.
[7] Fröder, H., Martins, C. G., De Souza, K. L. O., Landgraf, M., Franco, B. D., & Destro, M. T. (2007). Minimally processed vegetable salads: microbial quality evaluation. Journal of food protection, 70(5), 1277-1280.
[8] Park, M. S., Kim, Y. S., Lee, S. H., Kim, S. H., Park, K. H., & Bahk, G. J. (2015). Estimating the burden of foodborne disease, South Korea, 2008–2012. Foodborne Pathogens and Disease, 12(3), 207-213.
[9] Omar, M. A., Al-Aboudy, M. S., Abosheba, F., & Elzwawi, S. (2017). Prevalence of parasitic contamination of leafy green vegetables in misurata, Libya. Российский паразитологический журнал, (2 (40)), 197-204.
[10] Noorlis, A., Ghazali, F. M., Cheah, Y. K., Tuan Zainazor, T. C., Ponniah, J., Tunung, R., ... & Son, R. (2011). Prevalence and quantification of Vibrio species and Vibrio parahaemolyticus in freshwater fish at hypermarket level. International Food Research Journal, 18(2).
[11] Gormley, F. J., Little, C. L., Grant, K. A., De Pinna, E., & McLauchlin, J. (2010). The microbiological safety of ready-to-eat specialty meats from markets and specialty food shops: A UK wide study with a focus on Salmonella and Listeria monocytogenes. Food Microbiology, 27(2), 243-249.
[12] Banerjee, P., Maitra, S., & Banerjee, P. (2020). The role of small millets as functional food to combat malnutrition in developing countries. Indian Journal of Natural Sciences, 10(60), 20412-20417.
[13] Adarsh, A., Chettiyar, B., Kanthesh, B., & Raghu, N. (2020). Phytochemical screening and antimicrobial activity of “Cinnamon zeylanicum”. Int. J. Pharm. Res. Innov, 13, 22-33.
[14] Mehdizadeh, A., Shahidi, S. A., Shariatifar, N., Shiran, M., & Ghorbani-HasanSaraei, A. (2022). Physicochemical characteristics and antioxidant activity of the chitosan/zein films incorporated with Pulicaria gnaphalodes L. extract-loaded nanoliposomes. Journal of Food Measurement and Characterization, 16(2), 1252-1262.
[15] Azarashkan, Z., Motamedzadegan, A., Ghorbani-HasanSaraei, A., Rahaiee, S., & Biparva, P. (2022). Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. Food and Bioprocess Technology, 1-15.
[16] Azarashkan, Z., Motamedzadegan, A., Ghorbani‐HasanSaraei, A., Biparva, P., & Rahaiee, S. (2022). Investigation of the physicochemical, antioxidant, rheological, and sensory properties of ricotta cheese enriched with free and nano‐encapsulated broccoli sprout extract. Food Science & Nutrition, 10(11), 4059-4072.
[17] Emami, S., Ahmadi, M., Nasiraie, L. R., Shahidi, S. A., & Jafarizadeh-Malmiri, H. (2022). Cinnamon extract and its essential oil nanoliposomes–preparation, characterization and bactericidal activity assessment. Biologia, 77(10), 3015-3025.
[18] Jabraeili, S., Mirzaei, H., Anarjan, N., Javadi, A., & Behnajady, M. A. (2022). Nanoliposomal thyme (Thymus vulgaris) essential oil: Effects of formulation parameters. Food Science and Technology International, 28(3), 257-272.
[19] Firoozi, M., Rezapour‐Jahani, S., Shahvegharasl, Z., & Anarjan, N. (2020). Ginger essential oil nanoemulsions: Preparation and physicochemical characterization and antibacterial activities evaluation. Journal of Food Process Engineering, 43(8), e13434.
[20] Solomakos, N., Govaris, A., Koidis, P., & Botsoglou, N. (2008). The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157: H7 in minced beef during refrigerated storage. Meat science, 80(2), 159-166.
[21] Khademi, F., Raeisi, S. N., Younesi, M., Motamedzadegan, A., Rabiei, K., Shojaei, M., ... & Falsafi, M. (2022). Effect of probiotic bacteria on physicochemical, microbiological, textural, sensory properties and fatty acid profile of sour cream. Food and Chemical Toxicology, 166, 113244.
[22] Davarnia, B., Shahidi, S. A., Karimi-Maleh, H., Ghorbani-HasanSaraei, A., & Karimi, F. (2020). Biosynthesis of Ag Nanoparticle by Peganum Harmala Extract; Antimicrobial Activity and Ability for Fabrication of Quercetin Food Electrochemical Sensor. Int. J. Electrochem. Sci, 15, 2549-2560.
[23] Li, Y. Q., Kong, D. X., & Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Industrial Crops and Products, 41, 269-278.
[24] Anwekar, H., Patel, S., & Singhai, A. K. (2011). Liposome-as drug carriers. International journal of pharmacy & life sciences, 2(7).
[25] Buckingham, J. H., & Staehelin, L. A. (1969). The effect of glycerol on the structure of lecithin membranes; a study by freeze‐etching and X‐ray diffraction. Journal of Microscopy, 90(2), 83-106.
[26] Rafiee, Z., Barzegar, M., Sahari, M. A., & Maherani, B. (2017). Nanoliposomal carriers for improvement the bioavailability of high–valued phenolic compounds of pistachio green hull extract. Food chemistry, 220, 115-122.
[27] Pezeshky, A., Ghanbarzadeh, B., Hamishehkar, H., Moghadam, M., & Babazadeh, A. (2016). Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization. Food Bioscience, 13, 49-55.
[28] Anarjan, N., Tan, C. P., Nehdi, I. A., & Ling, T. C. (2012). Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food chemistry, 135(3), 1303-1309.
[29] Ahmadi, O., & Jafarizadeh-Malmiri, H. (2021). Intensification and optimization of the process for thyme oil in water nanoemulsions preparation using subcritical water and xanthan gum. Zeitschrift für Physikalische Chemie, 235(5), 629-648.
[30] Yang, K., Liu, A., Hu, A., Li, J., Zen, Z., Liu, Y., ... & Li, C. (2021). Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control, 123, 107783.
[31] Guerra-Rosas, M. I., Morales-Castro, J., Cubero-Márquez, M. A., Salvia-Trujillo, L., & Martín-Belloso, O. (2017). Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 77, 131-138.
[32] Arjabi, A., Anarjan, N., & Jafarizadeh‐Malmiri, H. (2021). Effects of extracting solvent composition on antioxidant and antibacterial activities of Alhagi maurorum extracts. Journal of Food Processing and Preservation, 45(3), e15300.
[33] Bagheri, L., Khodaei, N., Salmieri, S., Karboune, S., & Lacroix, M. (2020). Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: in-vitro efficacy and predictive modelling. Microbial pathogenesis, 147, 104212.
[34] Gokoglu, N., Topuz, O. K., & Yerlikaya, P. (2009). Effects of pomegranate sauce on quality of marinated anchovy during refrigerated storage. LWT-Food Science and Technology, 42(1), 113-118.
[35] Hernández, M. D., López, M. B., Álvarez, A., Ferrandini, E., García, B. G., & Garrido, M. D. (2009). Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food chemistry, 114(1), 237-245.
[36] Basiri, S., Shekarforoush, S. S., Aminlari, M., & Akbari, S. (2015). The effect of pomegranate peel extract (PPE) on the polyphenol oxidase (PPO) and quality of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage. LWT-Food Science and Technology, 60(2), 1025-1033.
[37] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food chemistry, 120(1), 193-198.
[38] Yuan, G., Lv, H., Yang, B., Chen, X., & Sun, H. (2015). Physical properties, antioxidant and antimicrobial activity of chitosan films containing carvacrol and pomegranate peel extract. Molecules, 20(6), 11034-11045.
[39] Valipour Kootenaie, F., Ariaii, P., Khademi Shurmasti, D., & Nemati, M. (2017). Effect of chitosan edible coating enriched with eucalyptus essential oil and α‐tocopherol on silver carp fillets quality during refrigerated storage. Journal of food safety, 37(1), e12295.
[40] Vaithiyanathan, S., Naveena, B. M., Muthukumar, M., Girish, P. S., & Kondaiah, N. (2011). Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 C). Meat science, 88(3), 409-414.
[41] Bazargani-Gilani, B., Aliakbarlu, J., & Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innovative food science & emerging technologies, 29, 280-287.
[42] Kim, Y. J., Jin, S. K., Park, W. Y., Kim, B. W., Joo, S. T., & Yang, H. S. (2010). The effect of garlic or onion marinade on the lipid oxidation and meat quality of pork during cold storage. Journal of Food Quality, 33, 171-185.
[43] Moawad, R. K., Abozeid, W. M., & Nadir, A. S. (2012). Effect of nitrite level and tea catechins on residual nitrite and quality indices of raw-cured sausages. Journal of Applied Sciences Research, 8(2), 815-822.
[44] Rashidaie Abandansarie, S. S., Ariaii, P., & Charmchian Langerodi, M. (2019). Effects of encapsulated rosemary extract on oxidative and microbiological stability of beef meat during refrigerated storage. Food science & nutrition, 7(12), 3969-3978.
[45] Campo, M. M., Nute, G. R., Hughes, S. I., Enser, M., Wood, J. D., & Richardson, R. I. (2006). Flavour perception of oxidation in beef. Meat Science, 72(2), 303-311.
[46] Abdi, R., Ghorbani-HasanSaraei, A., Karimi-Maleh, H., Raeisi, S. N., & Karimi, F. (2020). Determining caffeic acid in food samples using a voltammetric sensor amplified by Fe3O4 nanoparticles and room temperature ionic liquid. Int. J. Electrochem. Sci, 15, 2539-2548.
[47] Hayrapetyan, H., Hazeleger, W. C., & Beumer, R. R. (2012). Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control, 23(1), 66-72.
[48] Abdi, R., Ghorbani-HasanSaraei, A., Naghizadeh Raeisi, S., & Karimi, F. (2020). A gallic acid food electrochemical sensor based on amplification of paste electrode by Cdo/CNTs nanocomposite and ionic liquid. Journal of Medicinal and Chemical Sciences, 3(4), 338-344.
[49] Dahham, S. S., Ali, M. N., Tabassum, H., & Khan, M. (2010). Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.). Am. Eurasian J. Agric. Environ. Sci, 9(3), 273-281.
[50] Simsek, M., Uguz, M. T., Gul, M. K. E. A., Karakoc, S., & Digrak, M. (2011). Selection studies on high quality walnut types and their antibacterial properties. Journal of Medicinal Plants Research, 5(14), 3269-3275.
[51] Wilson, E. A., & Demmig‐Adams, B. (2007). Antioxidant, anti‐inflammatory, and antimicrobial properties of garlic and onions. Nutrition & food science. 37(3), 178-183.