تولید فیلم کامپوزیتی زیست فعال نوین کنسانتره پروتئین های آب پنیر و موسیلاژ عناب تقویت شده با پُست بیوتیک های باسیلوس کوآگولانس IBRC-M 10807

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، موسسه آموزش عالی صبا، ارومیه، ایران
2 استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
3 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران
4 دکتری تخصصی، گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
هدف از این پژوهش تولید فیلم کامپوزیتی زیست فعال نوین با استفاده از کنسانتره پروتئین آب‌پنیر و موسیلاژ عناب تقویت شده با پست‌بیوتیک باسیلوس کوآگولانس IBRC-M 10807 بود. برای این منظور چهار فیلم شامل فیلم کنسانتره پروتئین آب‌پنیر (WPC)، فیلم کنسانتره پروتئین آب‌پنیر حاوی پست‌بیوتیک باسیلوس کوآگولانس (WPC+PBs فیلم کنسانتره پروتئین آب‌پنیر و موسیلاژ عناب (WPC+MUC) و فیلم کنسانتره پروتئین آب‌پنیر و موسیلاژ عناب حاوی پست‌بیوتیک باسیلوس کوآگولانس (WPC+PBs+MUC) هرکدام در سه تکرار تولید و ویژگی­های فیزیکوشیمیایی، ضدمیکروبی، ضداکسایشی و مکانیکی در قالب طرح کاملا تصادفی و با روش تجزیه و تحلیل واریانس مورد مقایسه قرار گرفت. نتایج نشان داد که افزودن پست­بیوتیک­ها و موسیلاژ عناب موجب افزایش معنی­داری در رطوبت، حلالیت فیلم­ها شد (05/0>P). افزودن پست­بیوتیک­ها باعث اثر بازدارندگی در برابر باکتری­های استافیلوکوکوس اورئوس و اشریشیا کولی می­گردد (05/0>P). افزودن پست­بیوتیک­ها و موسیلاژ عناب سبب کاهش معنی­دار در شاخص L نمونه­های فیلم­های تولید شده گردید (05/0>P). نتایج نشان داد شاخص­های a و b با افزودن پست­بیوتیک­ها و موسیلاژ عناب به طور معنی­داری افزایش یافت (05/0>P). نتایج پژوهش حاضر نشان داد که فیلم بیوکامپوزیتی زیست فعال تولید شده پتانسیل استفاده در بسته بندی مواد غذایی را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of novel composite bioactive film of whey protein concentrate and Jujube mucilage reinforced by postbiotics of Bacillus coagulans IBRC-M 10807

نویسندگان English

Hanie Najafi 1
Saber Amiri 2
Amin Khalili 3
Laya Rezazad Bari 4
1 M.Sc. student, Department of Food Science and Technology, Faculty of Agriculture, Saba Institute of Higher Education, Urmia, Iran
2 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 Ph.D., Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran
چکیده English

The aim of this study was to produce a new bioactive composite film using whey protein concentrate and jujube mucilage reinforced with postbiotics of Bacillus coagulans IBRC-M 10807. For this purpose, four films including whey protein concentrate film (WPC), whey protein concentrate film containing B. coagulans postbiotics (WPC+PBs), whey protein concentrate film and jujube mucilage (WPC+MUC), and whey protein concentrate film and jujube mucilage containing B. coagulans postbiotics (WPC+PBs+MUC) each in three replicates of production and their physicochemical, antimicrobial, antioxidant and mechanical, were compared in the form of a completely random design and with the analysis of variance method. The results showed that the addition of postbiotics and jujube mucilage caused a significant increase in the moisture and solubility of the films (P<0.05). Adding postbiotics causes an inhibitory effect against Staphylococcus aureus and Escherichia coli bacteria (P<0.05). The addition of postbiotics and jujube mucilage caused a significant decrease in the L index of the produced film samples (P<0.05). The results showed that the a and b indexes increased significantly with the addition of postbiotics and jujube mucilage (P<0.05). The results of the present study showed that the produced bioactive biocomposite film has the potential to be used in food packaging.

کلیدواژه‌ها English

Biodegradable film
Milk proteins
Mucilage
Postbiotics
1. Meydanju, N., Pirsa, S., & Farzi, J. (2022). Biodegradable film based on lemon peel powder containing xanthan gum and TiO2–Ag nanoparticles: Investigation of physicochemical and antibacterial properties. Polymer Testing, 106, 107445.
2. Pirsa, S., & Hafezi, K. (2022). Hydrocolloids: Structure, preparation method, and application in food industry. Food Chemistry, 133967.
3. Zhao, C., Zheng, R., Shi, X., & Wang, L. (2021). Soil microbes and seed mucilage promote growth of the desert ephemeral plant Nepeta micrantha under different water conditions. Flora, 280, 151845.
4. Amiri, S., Teymorlouei, M. J., Bari, M. R., & Khaledabad, M. A. (2021). Development of Lactobacillus acidophilus LA5-loaded whey protein isolate/lactose bionanocomposite powder by electrospraying: A strategy for entrapment. Food Bioscience, 43, 101222.
5. Wang, B., Huang, Q., Venkitasamy, C., Chai, H., Gao, H., Cheng, N., ... & Pan, Z. (2016). Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT-Food Science and Technology, 66, 56-62.
6. Amiri, S., Nezamdoost-Sani, N., Mostashari, P., McClements, D. J., Marszałek, K., & Mousavi Khaneghah, A. (2022). Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Critical Reviews in Food Science and Nutrition, 1-27.
7. Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization, 12(11), 5869-5884.
8. Amiri, S., & Kazemi, S. (2022). Concept and potential applications of postbiotics in the food industry. Journal of food science and technology (Iran), 19(126), 87-101.
9. Farajinejad, Z., Mohtarami, F., Pirouzifard, M., Amiri, S., & Hamishehkar, H. (2022). Evaluation of the effect of sourdough of whole wheat flour containing fructooligosaccharide and Bacillus coagulans IBRC-M 10807 on bulk bread. Journal of food science and technology (Iran), 19(125), 255-268.
10. Alizadeh Behbahani, B., and Shahidi, F. (2019). Evaluation of the microbial, chemical and sensory characteristics of mutton coated with farnjameshk mucilage in combination with zenian essential oil to increase the nutritional value at refrigerator temperature. Iran Food Science and Industry Research, 16(4 (sequential 64)), 383-394. [in farsi]
11. Amiri, S., Nabizadeh, F., & Rezazad Bari, L. (2022). A novel source of food hydrocolloids from Trigonella elliptica seeds: extraction of mucilage and comprehensive characterization. Journal of the Science of Food and Agriculture, 102(15), 7144-7154.
12. Pirsa, S., Sani, I. K., & Mirtalebi, S. S. (2022). Nano-biocomposite based color sensors: investigation of structure, function, and applications in intelligent food packaging. Food Packaging and Shelf Life, 31, 100789.
13. Rasul, N. H., Asdagh, A., Pirsa, S., Ghazanfarirad, N., & Sani, I. K. (2022). Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express, 9(2), 025306.
14. Sani, Iraj Karimi, and Mohammad Alizadeh. "Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation/CeO2 nanoparticles/graphite carbon quantum dots: Investigating fluorescence, photocatalytic and antimicrobial properties." Food Packaging and Shelf Life 33 (2022): 100912.
15. Sadeghnezhad, Z., Amiri, S., Rezazadeh-Bari, M., & Almasi, H. (2020). Physical and morphological characteristics of edible composite film of sodium caseinate/pectin/zedo gum containing poulk (Stachys schtschegleevii) extract: optimizing bioactivity and physicochemical properties. Journal of Packaging Technology and Research, 4(2), 187-203.
16. Gholam-Zhiyan, A., Amiri, S., Rezazadeh-Bari, M., & Pirsa, S. (2021). Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (MPC)-based edible film. Journal of Packaging Technology and Research, 5(1), 11-22.
17. Daei, S., Mohtarami, F., & Pirsa, S. (2022). A biodegradable film based on carrageenan gum/Plantago psyllium mucilage/red beet extract: physicochemical properties, biodegradability and water absorption kinetic. Polymer Bulletin, 1-22.
18. Ghasemizad, S., Pirsa, S., Amiri, S., & Abdosatari, P. (2022). Optimization and Characterization of Bioactive Biocomposite Film Based on Orange Peel Incorporated with Gum Arabic Reinforced by Cr2O3 Nanoparticles. Journal of Polymers and the Environment, 30(6), 2493-2506.
19. Ghamari, M. A., Amiri, S., Rezazadeh-Bari, M., & Rezazad-Bari, L. (2022). Physical, mechanical, and antimicrobial properties of active edible film based on milk proteins incorporated with Nigella sativa essential oil. Polymer Bulletin, 79(2), 1097-1117.
20. Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Industrial Crops and products, 67, 403-413.
21. Han, J. H., & Krochta, J. M. (1999). Wetting properties and water vapor permeability of whey-protein-coated paper. Transactions of the ASAE, 42(5), 1375.
22. Nisar, T., Wang, Z. C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International journal of biological macromolecules, 106, 670-680.
23. Singh, G., Maurya, S., DeLampasona, M. P., & Catalan, C. A. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and chemical toxicology, 45(9), 1650-1661.
24. Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food science and Technology, 41(9), 1633-1641.
25. Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science, 78(2), E244-E250.
26. Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719.
27. Sani, I. K., Marand, S. A., Alizadeh, M., Amiri, S., & Asdagh, A. (2021). Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/encapsulated Melissa officinalis essential oil. Journal of Inorganic and Organometallic Polymers and Materials, 31(1), 261-271.
28. Kerami Moghadam A., Imam Juma, Z. and Yasini Ardakani, S.A. (2013). Investigating the physical, inhibitory and antimicrobial properties of sodium caseinate film containing pomegranate peel extract. Biosystem Engineering of Iran, Volume 45, Number 2, Fall and Winter 2013, pp. 121-130.[in farsi]
29. Marandi, M. S., Pirsa, S., Amiri, S., & Fazeli, M. (2022). Production of biodegradable films of zein containing mentha asiatica essential oil and copper oxide nanoparticles: investigation of physicochemical, antimicrobial, and antioxidant properties. Journal of Polymers and the Environment, 30(10), 4114-4129.
30. Souza, B. W., Cerqueira, M. A., Teixeira, J. A., & Vicente, A. A. (2010). The use of electric fields for edible coatings and films development and production: A review. Food Engineering Reviews, 2(4), 244-255.
31. Sun, Y., Chang, H., Kabatek, M., Song, Y. Y., Wang, Z., Jantz, M., ... & Hoffmann, A. (2013). Damping in yttrium iron garnet nanoscale films capped by platinum. Physical review letters, 111(10), 106601.
32. Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food hydrocolloids, 27(1), 220-227.
33. Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2010). Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 11(4), 697-702.
34. Zhou, J. J., Wang, S. Y., & Gunasekaran, S. (2009). Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. Journal of food science, 74(7), N50-N56.
35. Jabraili, A., Pirsa, S., Pirouzifard, M. K., & Amiri, S. (2021). Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. Journal of Polymers and the Environment, 29(8), 2557-2571.
36. Higuchi, T., & Aguiar, A. (1959). A study of permeability to water vapor of fats, waxes, and other enteric coating materials. Journal of the American Pharmaceutical Association (Scientific ed.), 48(10), 574-583.
37. Avena-Bustillos, R. J., & Krochta, J. M. (1993). Water vapor permeability of caseinate‐based edible films as affected by pH, calcium crosslinking and lipid content. Journal of food science, 58(4), 904-907.
38. Chick, J., & Hernandez, R. J. (2002). Physical, thermal, and barrier characterization of casein‐wax‐based edible films. Journal of food science, 67(3), 1073-1079.
39. Parris, N., & Coffin, D. R. (1997). Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films. Journal of agricultural and food chemistry, 45(5), 1596-1599.
40. Smaoui, S., Elleuch, L., Ben Salah, R., Najah, S., Chakchouk-Mtibaa, A., Sellem, I., ... & Mellouli, L. (2014). Efficient role of BacTN635 on the safety properties, sensory attributes, and texture profile of raw minced meat beef and chicken breast. Food Additives & Contaminants: Part A, 31(2), 218-225.
41. Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food hydrocolloids, 24(8), 770-775.
42. Amiri, S., Roshani Saray, F., Rezazad-Bari, L., & Pirsa, S. (2021). Optimization of extraction and characterization of physicochemical, structural, thermal, and antioxidant properties of mucilage from Hollyhock’s root: a functional heteropolysaccharide. Journal of Food Measurement and Characterization, 15(3), 2889-2903.
43. Asdagh, A., Karimi Sani, I., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo–Gharehgheshlaghi, H., ... & Taniyan, A. (2021). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335-349.
44. Pelissari, F. M., Andrade-Mahecha, M. M., do Amaral Sobral, P. J., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690.
45. Srinivasa, P. C., Ramesh, M. N., & Tharanathan, R. N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food hydrocolloids, 21(7), 1113-1122.