بهینه سازی شرایط تولید کربوکسی متیل سلولز از هسته خرما

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، موسسه آموزش عالی جهاد دانشگاهی، کاشمر، کاشمر، ایران
2 استادیار، گروه پژوهشی کیفیت و ایمنی مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاددانشگاهی، مشهد، ایران
3 عضو، گروه پژوهشی افزودنی‌ های غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاددانشگاهی، مشهد، ایران
چکیده
هسته خرما یکی از عمده­ترین ضایعات کشاورزی و مصارف صنعتی خرما می­باشد. هسته خرما در ایران اغلب به عنوان ضایعات دور ریخته شده و یا برای مصارف خوراک دام استفاده می­شود. در این پژوهش هسته خرما مورد بررسی قرار گرفت و محصول با ارزش کربوکسی متیل سلولز با درصد خلوص بالا از آن تولید شد. ترکیبات اصلی تشکیل دهنده هسته خرما سلولز، همی­ سلولز و لیگنین آن هستند که این مجموعه ساختار فیبری مستحکمی را تشکیل می­دهند. در این پژوهش سلولز با تیمار سدیم هیدروکسید و سدیم کلریت از پودر هسته خرما استخراج شد. سلولز استخراجی با استفاده از دو فرایند آلکالی سلولز و اتری سلولز تبدیل به CMC شد. جهت بررسی ساختار CMC از SEM استفاده شد، که حذف ناخالصی­های سطحی الیاف و شکل کروی متورم الیاف نشان دهنده مناسب بودن روش استفاده شده بوده است. برای شناسایی گروه­های کربوکسی متیلی جایگزین شده بر روی سلولز، از طیف­سنجیFTIR استفاده شد که پیک­های موجود در عدد موج های 1425 و 1612 بر سانتی­ متر، جایگزینی را تایید می­ کند. نتایج بهینه­ سازی نشان داد که در شرایط غلظت سدیم هیدروکسید 799/29%، نسبت وزنی سدیم مونوکلرواستیک اسید به سلولز برابر 1، دمای 68 درجه سلسیوس و زمان واکنش 158 دقیقه، بالاترین مقدار درجه استخلاف و درجه خلوص و بازده به دست می­آید که این بالاترین درجه استخلاف و درجه خلوص و بازده به ترتیب مقادیر 97/0، 99/97 و 80/166 درصد می­ باشند. همچنین ویسکوزیته محلوCMC 3 درصد در آب با سرعت 50 دور در دقیقه برابر با 93/347 میلی پاسکال ثانیه به دست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of carboxy methyl cellulose (CMC) production conditions from palm kernel

نویسندگان English

Seyedeh Parinaz Mobasseri 1
Masoomeh Mehraban Sangatash 2
Hossein Sabet Sarvestani 3
1 Department of Food Science and Technology, ACECR Kashmar Higher Education Institute, Kashmar, Iran
2 Department of Food Quality and Safety, Food Science and Technology Research Institute, ACECR Khorasan Razavi Branch, Mashhad, Iran
3 Department of Food Additives, Food Science and Technology Research Institute, ACECR Khorasan Razavi Branch, Mashhad, Iran
چکیده English

Palm kernel is one of the major agricultural wastes and industrial uses of dates. Palm kernels in Iran are often disposed of as waste or used for animal feed. In this research, this low value material was investigated and a product with a high purity value of carboxymethylcellulose was produced from it. Palm kernels contain about 63% cellulose. Cellulose along with hemicellulose and lignin are its main constituents, which form a strong fibrous structure. In this study, cellulose was extracted from palm kernel powder by treating sodium hydroxide and sodium chlorite. The extracted cellulose was converted to CMC using two processes: alkaline cellulose and ether cellulose. SEM was used to study the structure of CMC, which removed the surface impurities of the fibers and the swollen spherical shape of the fibers indicated the suitability of the method used. To identify the carboxymethyl groups substituted on cellulose, FTIR spectroscopy was used, which confirms the peaks in the wave numbers of 1425 and 1612 / cm. The optimization results showed that at a concentration of 29.799% sodium hydroxide, the weight ratio of sodium monochloroacetic acid to cellulose was 1, temprature 68 ° C and a reaction time of 158 min, the highest degree of substitution and purity and efficiency were obtained. It turns out that these highest degrees of extraction and degree of purity and efficiency are 0.97, 97.99 and 166.80%, respectively. Also, the viscosity of 3% CMC solution in water at 50 rpm was 347.93 ms.

کلیدواژه‌ها English

Palm kernel
Sodium hydroxide
Sodium monochloroacetic acid
Cellulose
Carboxymethylcellulose
[1] Zhou R, Mo Y, Li Y, Zhao Y. (2008). Quality and internal characteristics of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua) treated with different kinds of coatings during storage. Postharvest. Biol Technol. 49(1):171–179.
[2] Boonmee A. (2012). Hydrolysis of various thai agricultural biomasses using the crude enzyme from Aspergillus aculeatus iizuka FR60 isolated from soi. Brazilian Journal of Microbiology. 43(2): 456-466.
[3] Adinugraha M.P, Marseno D.W. (2005). Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydr. Polym. 62(2):164–169.
[4] Stewart D. (2008). Lignin as a Base Material for Materials Applications: Chemistry. Application and Economics, Ind. Crops Prod. 27(2): 202–207.
[5] Al-Qarawi A, Abdel-Rahman H, Mousa H, Ali B, ElMoug. S. (2008). Nephroprotective action of Phoenix dactylifera. in gentamicin-induced nephrotoxicity. Pharmaceutical Biology. 46:227-230.
[6] Boukouada M, Yousfi M. (2009). Phytochemical study of date seeds lipids of three fruits (Phoenix dactylifera L) produced in Ouargla region. Annales de la Faculté des Sciences et Sciemces de I’Ingénieur. 1: 66-74.
[7] Al Harthi. S.S., Mavazhe, A. Al Mahroqi, H. Khan, S.A. (2015). Quantification of phenolic compounds, evaluation of physicochemical properties and antioxidant activity of four date (Phoenix dactylifera L.) varieties of Oman. Journal of Taibah University Medical Sciences. 10(3):346-352.
[8] Ahmed Y, Taiseer M. (2018). Synthesis and Characteristic of Carboxymethyl Cellulose from Baobab (Adansonia Digitata L.) Fruite Shell. International Journal of Engineering and Applied Sciences. 5(12):2394-3661.
[9] Fink P, Walenta E, Kunze J, Mann G. (1995). Cellulose and cellulose derivatives: physico-chemical aspects and industrial applications. In: J.F Kennedy, G.O. Phillips, P.A. Williams and L. Piculell, eds.. Cambridge: Woodhead Publ. Ltd. Pp:523-528.
[10] Hussein S, Alhadrami A, Khalil H. (1998). The use of dates and date pits in broiler starter and finisher diets. Bioresource Technology. 66:219-223.
[11] Karami M, Resalati H, Sarayan A, Dehghani M. (2017). Production of alpha-cellulose from bagasse and evaluation its characteristics. Wood and Forest Science and Technology Research. 24(3):183-196.
[12] Gutawa K, Willy T, Nikita R. (2015). Synthesis and characterization of sodium carboxymethyl cellulose from pod husk of Cacao (Theobroma cacao L.). International Journal of Food Science and Microbiology. 3(6):98-103.
[13] Klemm D, Philipp B, Heinze T, Heinze U, Wagwnknecht W. (2001). Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods. Vol.1. Wiley‐VCH Verlag GmbH. PP:1,10,14,23,58.
[14] Amen-Chen C, Pakdel C Roy. (2001). Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol. 79(3):277–299.
[15] Besbes S, Blecker C, Deroanne C, Lognay G. (2005). Heating effects on some quality characteristics of date seed oil. Food Chemistry.;91:469- 476.
[16] Hameelinck N, Van Hooijdonk G, Faaij C. (2005). Ethanol from lignocellulosic biomass:techno-economic performance in short-, middle-and long-term. Biomass and bioenergy. 28(4):384–410.
[17] Arefian M, Hojjati. M, Tajzad I, Mokhtarzade A. (2020). A review of Polyvinyl alcohol/Carboxiy methyl cellulose (PVA/CMC) composites for various applications. Journal of Composites and Compounds. 2(3):69-76.
[18] Sitotaw W. (2011). Synthesis of Carboxymethyl cellulose from sugarcane bagasse. Doctoral dissertation, Addis Ababa University. PP:13-29.
[19] Azzaoui K, Mejdoubi E, Lamhamdi A. (2017). Preparation and characterization of biodegradable nanocomposites derived from carboxymethyl cellulose and hydroxyapatite. Carbohydrate polymers. 167:59-69.
[20] Abbasi R, Ariaei Monfared, Yousefi H, Satshani P, Saraiyan A. (2018). Production of nanocellulose as a material with high added value, from different parts of the palm tree. Green chemistry and sustainable technologies. 1(2):56-75.
[21] Kayani H, Resalati H, Sharifi H. (2017). Optimizing process variables of carboxymethyl cellulose production from alpha cellulose obtained from cotton linter using response surface method. Wood and paper science research in Iran. 33(4):579-592.
[22] Amani H, Hassan Khah A, Talibnia F. (2015). Cellulose extraction and investigation of carboxymethyl cellulose production from several sources of agricultural waste. Iranian Journal of Chemistry and Chemical Engineering. 35(2):113-120.
[23] Mehdikhani H, Jalali Tarshizi H, Jafari Patroudi R, Mirshkaraei A. (2015). Production of carboxymethyl cellulose (CMC) from bagasse decolorized paper pulp and de-inked mixed office waste papers: identification and comparison of characteristics. Wood and paper industries of Iran. 7(3):311-321.
[24] Sophonputtanaphoca S, Chutong P, Cha-aim K, Nooeaid P. (2019). Potential of Thai rice straw as a raw material for the synthesis of carboxymethylcellulose. International Food Research Journal. 26(3): 969-978.
[25] Ibikunle A, Ogunneye L, Soga J, Sanyaolu N, Yussuf S. (2019). Food grade carboxymethyl cellulose preparation from African star apple seed (Chrysophyllum albidum) shells: optimization and characterization. Ife Journal of Science. 21(3):
[26] Youssif A, Taiseer H. (2018). Synthesis and Characteristic of Carboxymethyl Cellulose from Baobab (Adansonia Digitata L.) Fruit Shell. International Journal of Engineering and Applied Sciences. 12(5):2394-3661.
[27] Worapan P, Dechawat K, Poolai P. (2019). Production and Characterization of Carboxymethyl Cellulose from Orange Rind. RMUTP Research Journal. 13(1):127-138.
[28] Krassig H, Schurz J. (1986). Cellulose. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH.