مدلسازی و بهینه سازی نانوامولسیون اسانس موسیر ایرانی حامل اسیدهای چرب امگا سه با استفاده از طرح D-Optimal

نویسندگان
1 دانش آموخته دکترای علوم و صنایع غذایی، مدیر تحقیق و توسعه شرکت آذین شوشتر
2 استاد دانشگاه ارومیه
3 کارشناس ارشد صنایع غذایی، مدیر کنترل کیفیت شرکت آذین شوشتر
چکیده
استفاده از روش های کم انرژی بدلیل عدم نیاز به تجهیزات گران قیمت و سهولت تولید بسیار رواج یافته است. در این پژوهش، نانوامولسیون اسیدهای چرب امگا سه با استفاده از اسانس‌ موسیر ایرانی به روش امولسیفیکاسیون خودبخودی تهیه گردید. هدف از این مطالعه، بررسی شرایط بهینه تولید نانوامولسیون با استفاده از طرح دی اپتیمال بود و برای این منظور در ابتدا نانوامولسیون های حاوی اسیدهای چرب امگا سه با استفاده از اسانس گیاهی موسیر ایرانی با متغیرهای مستقل غلظت امگا سه ( 75-25 درصد)، نوع سورفاکتانت (توئین 80، توئین 20، توئین 80:20 و کازئینات سدیم)، درصد SOR (نسبت سورفاکتانت به روغن) (300-10 درصد) و مدت زمان نگهداری (60-1روز) تولید گردیدند و تاثیر آنها بر پارامترهایی مانند میانگین قطر ذرات، شاخص کدورت، اندیس خامه ای شدن، خواص آنتی اکسیدانی، اندیس پراکسید، اندیس تیوباربیتوریک اسید و ضریب شکست مورد مطالعه قرار گرفت. اندازه قطرات بسیار تحت تاثیر غلظت سورفاکتانت و نوع سورفاکتانت بود و با افزایش مقدار سورفاکتانت، میانگین قطر قطرات کاهش معنی داری یافت، در واقع افزایش غلظت سورفاکتانت در نانوامولسیون ها در اکثر موارد سبب افزایش میزان جذب سورفاکتانت به سطح W/O گردیده و در نتیجه منجر به کاهش بیشتر کشش سطحی شده و در نهایت سبب کاهش اندازه ذرات، شاخص کدورت و اندیس خامه ای شدن گردید. با استفاده از بهینه سازی عددی مقادیر بهینه متغیرهای مستقل نانو امولسیون اسانس موسیر ایرانی حامل اسیدهای چرب امگا سه به میزان امگا سه (25 درصد)، میزان SOR (39/263درصد)، مدت زمان نگهدار (35روز) و نوع سورفاکتانت توئین 80 تعیین شدند.

موضوعات


عنوان مقاله English

Modeling and optimization of nanoemulsion of Iranian shallot essential oil carrying omega3 fatty acids using D-Optimal design

نویسندگان English

NASRIN FARAJI 1
Mohammad Alizadeh 2
Soheila FARAJI 3
1 phd graduated in Food science and technology, R&D manager at azin company
3 MSc in Food science and technology, QC manager at azin company
چکیده English

ing of low energy methods has become very popular due to the lack of expensive equipment and ease of production. In this study, nanoemulsions of omega-3 fatty acids were prepared using Iranian shallot essential oil by spontaneous emulsification method. The aim of this study was to investigate the optimal conditions for the production of nanoemulsions using a D-optimal design. (Tween 80, Tween 20, Tween 80:20 and sodium caseinate), SOR (ratio of surfactant to oil) (10-300%) and shelf life (1-60 days) were produced. Their effect on parameters such as mean particle diameter, turbidity index, creaming index, antioxidant properties, peroxide index, thiobarbituric acid index and refractive index were studied. The droplet size was highly affected by the surfactant concentration and the type of surfactant, and with increasing the amount of surfactant, the average droplet diameter decreased significantly. In fact, increasing the concentration of surfactant in nanoemulsions in most cases increased the adsorption of surfactant to the W / O level and as a result led to a further reduction in surface tension and ultimately reduced the particle size, turbidity index and creamy index. Using numerical optimization, the optimal values ​​of independent variables of nanoemulsion of Iranian shallot essential oil containing omega-3 fatty acids were determined as omega-3 (25%), SOR (263.39%), shelf life (35 days) and type of surfactant Tween 80.

کلیدواژه‌ها English

Nanoemulsion
Unsaturated fatty acid
Omega3
Spontaneous Emulsification
Iranian shallot
1) SAARELA, M., LÄHTEENMÄKI, L., CRITTENDEN, R., SALMINEN, S. and MATTILA-SANDHOLM, T. 2002. Gut bacteria and health foods—the European perspective. International journal of food microbiology, 78, 99-117
2) MAKI, K. C., YURKO-MAURO, K., DICKLIN, M. R., SCHILD, A. L. and GEOHAS, J. G. 2014. A new, microalgal DHA-and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia. Prostaglandins, Leukotrienes and Essential Fatty Acids, 91, 141-148.
3) KESAVULU, M., KAMESWARARAO, B., APPARAO, C., KUMAR, E. and HARINARAYAN, C. 2002. Effect of omega3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes and Metabolism, 28, 20-26.
4) KRIS-ETHERTON, P. M., GRIEGER, J. A. and ETHERTON, T. D. 2009. Dietary reference intakes for DHA and EPA. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81, 99-104.
5) LAVIE, C. J., MILANI, R. V., MEHRA, M. R. and VENTURA, H. O. 2009. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. Journal of the American College of Cardiology, 54, 585-594.
6) NUCHI, C. D., MCCLEMENTS, D. J. and DECKER, E. A. 2001. Impact of Tween 20 hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil dispersions. Journal of agricultural and food chemistry, 49, 4912-4916.
7) MCCLEMENTS, D. J. and RAO, J. 2011. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical reviews in food science and nutrition, 51, 285-330.
8) RAO, J. and MCCLEMENTS, D. J. 2012. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food hydrocolloids, 29, 326-334.
9) WALKER, R., DECKER, E. A. and MCCLEMENTS, D. J. 2015a. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food and function, 6, 41-54.
10) SABERI, A. H., FANG, Y. and MCCLEMENTS, D. J. 2013b. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of colloid and interface science, 391, 95-102.
11) MCCLEMENTS, D. J. 2012. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft matter, 8, 1719-1729.
12) LI, J., HWANG, I.-C., CHEN, X. and PARK, H. J. 2016. Effects of chitosan coating on curcumin loaded nano- emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids, 60, 138-147.
13) JALAL, R., BAGHERI, S. M., MOGHIMI, A. and RASULI, M. B. 2007. Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance. Journal of Clinical Biochemistry and Nutrition, 41, 218-223.
14) SABERI, A. H., FANG, Y. and MCCLEMENTS, D. J. 2014. Effect of salts on formation and stability of vitamin E-enriched mini-emulsions produced by spontaneous emulsification. Journal of agricultural and food chemistry, 62, 11246-11253.
15) ISIRI.4179.Peroxide value.1377
16) Amirdivani Sh and Salihin Baba A, 2011. Change in yogurt fermentation characteristic and antioxidant potential and in vivo inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. Food Science and Technology, 44:1458-1464
17) MOLYNEUX, P. 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol, 26, 211-219.
18) XIA, S. and XU, S. 2005. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food research international, 38, 289-296.
19) MARTÍN-DIANA, A. B., RICO, D., BARAT, J. and BARRY-RYAN, C. 2009. Orange juices enriched with chitosan: Optimisation for extending the shelf-life. Innovative food science and emerging technologies, 10, 590-600.
20) CHANDA, H., DAS, P., CHAKRABORTY, R. and GHOSH, A. 2011. Development and evaluation of liposomes of fluconazole. J Pharm Biomed Sci, 5, 1-9.
21) WALKER, R. M., DECKER, E. A. and MCCLEMENTS, D. J. 2015b. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. Journal of Food Engineering, 164, 10-20.
22) GHOSH, V., MUKHERJEE, A. and CHANDRASEKARAN, N. 2014. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids and Surfaces B: Biointerfaces, 114, 392-397.
23) KRSTONOŠIĆ, V., DOKIĆ, L., DOKIĆ, P. and DAPČEVIĆ, T. 2009. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids, 23, 2212-2218.
24) MOHAMMADI, A., JAFARI, S. M., ESFANJANI, A. F. and AKHAVAN, S. 2016. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food chemistry, 190, 513-519.
25) RICHARDSON, A. J. 2006. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders. International review of psychiatry, 18, 155-172.
26) HEINZELMANN, K., FRANKE, K., JENSEN, B. and HAAHR, A. M. 2000. Protection of fish oil from oxidation by microencapsulation using freeze‐drying techniques. European Journal of Lipid Science and Technology, 102, 114-121.
27) ALFARO SANABRIA, L. A. 2012. Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil.
28) AHN, J.-H., KIM, Y.-P., LEE, Y.-M., SEO, E.-M., LEE, K.-W. and KIM, H.-S. 2008. Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107, 98-105.
29) YI, J., ZHU, Z., MCCLEMENTS, D. J. and DECKER, E. A. 2014. Influence of aqueous phase emulsifiers on lipid oxidation in water-in-walnut oil emulsions. Journal of agricultural and food chemistry, 62, 2104-2111.
30) GORTZI, O., LALAS, S., CHINOU, I. and TSAKNIS, J. 2008. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European food research and technology, 226, 583-590.
31) LI, Y., XIAO, H. and MCCLEMENTS, D. J. 2012. Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility. Food biophysics, 7, 341-353.
32) LI, J., SOLVAL, K. M., ALFARO, L., ZHANG, J., CHOTIKO, A., DELGADO, J. L. B., CHOULJENKO, A., BANKSTON, D., BECHTEL, P. J. and SATHIVEL, S. 2015. Effect of blueberry extract from blueberry pomace on the microencapsulated fish oil. Journal of Food Processing and Preservation, 39, 199-206.
33) CHEN, H., GUAN, Y. and ZHONG, Q. 2015. Microemulsions based on a sunflower lecithin–Tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10. Journal of agricultural and food chemistry, 63, 983-989.