بهینه سازی اثر همزمان تغییر پارامترهای رنگبری بر پایداری اکسایشی، کارایی رنگبری و حفظ ترکیبات ارزشمند روغن ذرت به روش سطح پاسخ (RSM)

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، تهران، ایران
2 گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد شهرکرد، شهرکرد، ایران
3 دانشگاه علوم پزشکی شهید صدوقی یزد، یزد، ایران
چکیده
یکی از مهمترین مراحل فرایند تصفیه برای روغن­های خوراکی، مرحله­ی رنگبری می­باشد. رنگبری یک فرایند جذب است که شامل استفاده از خاک­­­رس فعال­شده با اسید به منظور حذف اجزای نامطلوب روغن است. بدین­ترتیب بهینه­سازی پارامترهای رنگبری به طور عمده دما، زمان و غلظت خاک­رنگبر به منظور جلوگیری از تغییرات نامطلوب روغن در مراحل بعدی و در طول نگهداری ضروری است. در این تحقیق روغن ذرت انتخاب شد و اثر تغییر پارامترهای رنگبری بر ویژگی­های شیمیایی روغن به منظور بهینه­سازی فرایند موردمطالعه قرار گرفت. برای این منظور اثر زمان (15، 25، 35، 45 و 55 دقیقه)، دما (80، 90، 100، 110 و120 درجه سانتی­گراد) و غلظت خاک­رنگبر (4/0، 6/0، 8/0، 1 و 2/1درصد) با استفاده از طرح آماری سطح پاسخ در 5 سطح به روش طرح مرکب مرکزی Central Composite Design با هدف کاهش مصرف خاک­رنگبر بررسی شد. اثر پارامترهای رنگبری بر پایداری اکسایشی (عدد پراکسید، عدد آنیسیدین، عدد توتوکس، مقدار اسید چرب آزاد، تست رنسیمت و جذب ویژه در 232 نانومتر و 270 نانومتر)، کارایی رنگبری (مقدار کاروتنوئید) و ترکیبات بیواکتیو (مقدار استرول­ها) در روغن ذرت مطالعه گردید. نتایج نشان داد پس از بهینه­سازی بهترین شرایط برای مرحله رنگبری در روغن ذرت به منظور به حداقل­رساندن ناخالصی­ها، حفظ ترکیبات بیواکتیو و حداقل مصرف خاک­رنگبر زمان 59/35 دقیقه، دمای 61/103 درجه سانتیگراد و غلظت خاک رنگبر 1 درصد بود که قادر بود 57 درصد انتظارات را برآورده کند. نتایج عملی هیچ اختلاف معناداری با مقادیری که از طریق تئوری بدست آمده­بود نشان نداد و مؤید این نتایج بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing the simultaneous effect of change in bleaching parameters on oxidative stability, bleaching efficiency and bioactive compounds of corn oil using response surface methodology

نویسندگان English

Leila Sedaghat Boroujeni 1
‌Behnaz Naghshbandi 2
Masoud Habibi Najafi 3
1 PhD in Food Science and Industry, Department of Food Science and Industry, Islamic Azad University, Tehran Science and Research Unit, Tehran, Iran
2 Department of Food Science and Industry, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran.
3 Shahid Sadoughi University of Medical Sciences, Yazd, Iran
چکیده English

One of the most important steps in the refining process for edible oils is the coloring step. Decolorization is an absorption process that involves the use of acid-activated clay to remove undesirable components of oil. Therefore, it is necessary to optimize the parameters of decolorization, mainly temperature, time and concentration of decolorizing soil in order to prevent adverse changes of the oil in the next stages and during storage. In this research, corn oil was selected and the effect of changing the dyeing parameters on the chemical properties of the oil was studied in order to optimize the process. For this purpose, the effect of time (15, 25, 35, 45 and 55 minutes), temperature (80, 90, 100, 110 and 120 degrees Celsius) and the concentration of soil-dye remover (0.4, 0.6, 0.8) , 1 and 1.2 percent) was investigated using the statistical design of the response level in 5 levels by the Central Composite Design method with the aim of reducing the consumption of soil-dye remover. The effect of decolorization parameters on oxidative stability (peroxide number, anisidine number, totox number, free fatty acid amount, Rancimet test and specific absorption at 232 nm and 270 nm), decolorization efficiency (carotenoid amount) and bioactive compounds (sterols amount) in Corn oil was studied. The results showed that after optimizing the best conditions for the decolorization stage in corn oil in order to minimize impurities, preserve bioactive compounds, and minimize the consumption of decolorizing soil, the time of decolorization was 35.59 minutes, the temperature was 103.61 degrees Celsius, and the soil concentration The dye was 1%, which was able to meet 57% of expectations. The practical results did not show any significant differences with the theoretical values ​​and confirmed these results.

کلیدواژه‌ها English

Bioactive compounds
Bleaching efficiency
Corn oil
Oxidative stability
response surface methodology
[1] O’Brien, D. R. 2004. Fats and oils: Formulating and processing for applications. CRC Press.
[2] Gunstone, F. D. 2005. Vegetable oils. In Bailey’s industrial oil and fat products. 6th Ed. Edited by Shahidi, F. Wiley-interscience publication.
[3] Didi, M. A. & Makhoukhi, B. 2007. Colza oil bleaching through optimized acid activation of bentonite. A comparative study. Applied Clay Science, 20-28.
[4] Kirali, E. G. & Lacin, O. 2005. Statistical modelling of acid activation of cotton oil bleaching by turkish bentonite. Journal of Food Engineering, 75, 137-141.
[5] Waterman, H. I. 1997. Hydrogenation of fatty oils, Elsevier Publishing Company, New York, pp. 66-130.
[6] Ssebuwufu, P. J. M., Nyanzi, S. A., Schumann, A., Nyakairu, G. W. & Lugolobi, F. 2014. Using trace metals, peroxide, acid and iodine values to characterize oils bleached using clays from central and Eastern Uganda. American Journal of Analytical Chemistry, 5(17), 1302.
[7] Skevin, D., Domijan, T., Kraljic, K., Gajdoš, J., Neđeral, S. & Obranovi, M. 2012. Optimization of bleaching parameters for soybean oil. Food Technology and Biotechnology, 50(2), 199–207.
[8] Fennema, O. R. 1996. Food chemistry. Marcel Dekker, Inc.
[9] AOCS. 1998. Official Methods and Recommended Practices of the American Oil Chemists’ Society. 4th edition, Champaign, IL: AOCS Press.
[10] Sedaghat Boroujeni, L., Ghavami, M., Piravi Vanak. & Ghasemi Pirbalouti, A. 2020a. Optimization of sunflower oil bleaching parameters: using Response Surface Methodology (RSM). Food Science and Technology, 40(1), 322-330.
[11] Anderson, D. 2005. A primer on oils processing technology. In Shahidi, F (Ed). Bailey’s industrial oil and fat products. 6th Ed. Wiley-interscience publication, pp. 1-57.
[12] Wu, Y., Zhou, R., Wang, Z., Wang, B., Yang, Y. & Ju, X. 2019. The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. PLoS One, 14(3), 1-16.ID
[13] Mortazavi, A., Seifkordi, A., Kadkhodaee, R. & Shafafi, M. 2005. An Introduction to Food Industry Engineering (3th ed.). Mashhad, Ferdowsi University of Mashhad Press (In Farsi).
[14] Naji, M. H., Ghavami, M., Amin Lari, M. 2010. The effect of different bleaching earths on the quality edible oils. Food Technology and Nutrition, 7(4): 5-19 (In Farsi).
[15] Hamiltion, R. J. & Bhati, A. 2001. Fats and oils: chemistry and tecgnology, applied science publishers LTD, Landon, pp. 135-165.
[16] Ortega-Garc´ıa, J., G´amez-Meza, N., Noriega-Rodriguez, J. A., Dennis-Qui˜nonez, O., Garc´ıa Galindo, H. S., Angulo-Guerrero, J. O. & Medina-Ju´arez, L. A. 2006. Refining of high oleic safflower oil: Effect on the sterols and tocopherols content. European Food Research and Technology, 223, 775–779
[17] Sabah, E. & Sabri, M. 2005. Sepiolite: An effective bleaching adsorbent for the physical refining of degummed rapeseed oil. Journal of American Oil Chemists' Society, 82(12), 911-916.
[18] Saneei, M., Goli, S. A. H., Keramat, J., Shirvani, M. & Vatankhah, H. 2013. Optimization of soybean oil bleaching process by response surface methodology. Third International Conference on New Approaches to Energy Conservation (In Farsi).
[19] Verleyena, T., Sosinska, U., Ioannidoua, S., Verhe, R., Dewettinckb, K., Huyghebaert, A. & De Greyt, W. 2002. Influence of the Vegetable Oil Refining Process on Free and Esterified Sterols.
[20] Anon. 1994. Animal and vegetable fats and oils– Determination of oxidation stability: accelerated oxidation test. ISO/ DIS, 6886.2, Geneva, Switzerland.
[21] Anon. 1999. Animal and vegetable fats and oils – Determination of Individual and Total Sterols Contents – Gas Chromatographic Method, ISO Method 12228:1999, Geneva, Switzerland.
[22] Anon. 2006. Animal and vegetable fats and oils – Determination of Anisidine Value, ISO Method 6885:2006, Geneva, Switzerland.
[23] Anon. 2007. Animal and vegetable fats and oils – Determination of Peroxide Value – Iodometric (Visual) Endpoint Determination, ISO Method 3960:2007, Geneva, Switzerland.
[24] Anon. 2009. Animal and vegetable fats and oils – Determination of Acid Value and Acidity, ISO Method 660:2009, Geneva, Switzerland.
[25] Anon. 2011. Animal and vegetable fats and oils – Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction, ISO Method 3656:2011, Geneva, Switzerland.
[26] Anon. 2011. Animal and vegetable fats and Oils-Gas chromatography of fatty acid methyl Esters-Part 2: Preparation of fatty acid methyl esters. ISO 12966-2.
[27] Anon. 2011. Animal and vegetable fats and Oils-Gas chromatography of fatty acid methyl Esters-Part 4: Determination by capillary gaschromatography. ISO 12966-4.
[28] Dimic, E., Karlovic, D. J. & Turkulov, J. 1994. Pretreatment efficiency for physical refining of sunflowerseed oil. Journal of the American Oil Chemist Society, 71, 1357-1361.
[29] Sedaghat Boroujeni, L., Ghavami, M., Piravi Vanak, Z. & Ghasemi Pirbalouti, A. 2020b. Optimizing the simultaneous effect of change in bleaching parameters on the quality of sunflower oil using response surface methodology (RSM). Innovative Food Technologies, 8(1), 83-95.