بررسی مقایسه ای ویژگی‌های فیزیکوشیمیایی هیدرولیزهای پروتئینی سارکوپلاسمیک و میوفیبریلار گربه ماهی (Pangasius sutchi) توسط هیدرولیز آنزیمی

نویسنده
گروه علوم و صنایع غذایی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران
چکیده
پژوهش حاضر با هدف بررسی اثر هیدرولیز آنزیمی پروتئین‌های سارکوپلاستیک و میوفیبریلار گربه ماهی patin (Pangasius sutchi) بر ترکیبات شیمیایی، حلالیت، درجه هیدرولیز (DH)، محتوای پپتید و ترکیبات اسید آمینه مورد ارزیابی قرار گرفت و وزن مولکولی آنها انجام شد. هیدرولیزهای پروتئین سارکوپلاسمیک ماهی (SPHs) و هیدرولیز پروتئین‌های میوفیبریلار (MPHs) با استفاده از سه نوع پروتئاز: پاپائین، آلکالاز و فلاورزایم تولید شدند و خواص فیزیکوشیمیایی پروتئین ها و وزن مولکولی مورد بررسی قرار گرفت. نتایج نشان داد که نوع پروتئاز بر درجه هیدرولیز (DH) تأثیر می‌گذارد که در آن تمام آنزیم‌ها در ساعت اول سرعت هیدرولیز بالایی را نشان می‌دهند و سپس به تدریج کاهش می‌یابند. نوع آنزیم و میزان DH تا حد زیادی بر ترکیب باقی مانده اسید آمینه و وزن مولکولی هیدرولیزهای پروتئین تأثیر گذاشت. ترکیب اسیدهای آمینه مختلف پروتئین‌ها و هیدرولیزهای آنها مشاهده شد. محتوای پپتید و پروتئین محلول هیدرولیزها با افزایش زمان انکوباسیون به طور قابل توجهی افزایش یافت. میزان بالای اسیدهای آمینه آبگریز و آروماتیک در SPH و MPH می تواند فعالیت‌های بیولوژیکی پپتیدها را افزایش دهد. نتایج نشان می دهد که هر دو هیدرولیزهای پروتئینی سارکوپلاسمیک و میوفیبریلار مشتق شده از ماهی patin به دلیل وزن مولکولی پایین و اسیدهای آبگریز و آروماتیک بالا ممکن است در مواد غذایی عملکردی و مکمل‌ها استفاده شوند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparative Study on Physicochemical Properties of Catfish Sarcoplasmic and Myofibrillar Protein Hydrolysates Produced by Enzymatic Hydrolysis

نویسنده English

Leila Najafian
Department of Food Science and Technology, Sari Branch, Islamic Azad University, Sari, Iran
چکیده English

The present work aimed to study the effect of enzymatic hydrolysis of sarcoplastic and myofibrillar proteins from pangasius sutchi fish on the chemical compositions, the solubility, degree of hydrolysis (DH), peptide content and amino acid compositions was evaluated and their molecular weight recorded. The fish sarcoplasmic protein hydrolysates (SPHs) and myofibrillar protein hydrolysates (MPHs) were produced using three types of proteases: papain, alcalase and flavourzyme. Physicochemical properties of proteins and molecular weight were investigated. Results indicated that type of protease affected the degree of hydrolysis (DH), where all of the enzymes showed high rate of hydrolysis during the first hour, and then gradually decreased. The type of enzyme and the extent of the DH greatly influenced the amino acid residue composition and the molecular weight of the protein hydrolysates. Different amino acid composition of proteins and their hydrolysates was observed. The soluble protein and peptide content of hydrolysates significantly increased by the increase in time of incubation. The high amount of hydrophobic and aromatic amino acids in the SPH and MPH can enhance the biological activities of the peptides. Results suggest that the protein hydrolysates derived from patin may be used in functional food and supplements.

کلیدواژه‌ها English

Amino acid compositions
enzymatic hydrolysis
Molecular weight
sarcoplasmic and myfibrillar proteins
Solubility
[1] Hartmann, R. & Meisel, H. 2007. Food-derived peptides with biological activity: From research to food applications. Current Opinion in Biotechnology 18: 1-7.
[2] Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S. & Marc, I. 2007. Hydrolysis of rapeseed protein isolates: kinetics, Characterization and Functional Properties of Hydrolysates. Process Biochemistry 42: 1419-1428.
[3] Pazinatto, C., Malta, L.G., Pastore, G.M. & Maria Netto, F. 2013. Antioxidant capacity of amaranth products: effects of thermal and enzymatic treatments. Food Science and Technology 33: 485- 493.
[4] Polanco-Lugo, E., Dávila-Ortiz, G., Betancur-Ancona, D. A. & Chel-Guerrero, L. A. 2014. Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate. Food Science and Technolology 34: 441-448.
[5] Yathisha, U. G., Vaidya, S., & Sheshappa, M. B. 2022. Functional Properties of Protein Hydrolyzate from Ribbon Fish (Lepturacanthus Savala) as Prepared by Enzymatic hydrolysis, International Journal of Food Properties, 25 (1): 187-203.
[6] Ucak, I.; Afreen, M., Montesano, D., Carrillo, C.; Tomasevic, I., Simal-Gandara, J. & Barba, F. J. 2021. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Marine Drugs 19: 71.
[7] Hemker, A. K., Nguyen, L. T., Karwe, M. & Salvi, D. 2020. Effects of Pressure-assisted Enzymatic Hydrolysis on Functional and Bioactive Properties of Tilapia (Oreochromis niloticus) By-product Protein Hydrolysates. LWT-Food Science and Technology 122: 109003.
[8] Wouters, A. G. B., Rombouts, I., Fierens, E., Brijs, K. & Delcour, J. A. 2016. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Comprehensive Reviews in Food Science and Food Safety 15: 786-800.
[9] Shahidi, F. & Zhong, Y. 2008. Bioactive Peptides. Journal of AOAC International 9: 914-931.
[10] Leni, G., Soetemans, L., Caligiani, A., Sforza, S. & Bastiaens, L. 2020. Degree of Hydrolysis Affects the Techno-functional Properties of Lesser Mealworm Protein Hydrolysates. Foods 9: 381.
[11] Xu, Y., Galanopoulos, M., Sismour, E., Ren, S., Mersha, Z., Lynch, P. & Almutaimi, A. 2020. Effect of Enzymatic Hydrolysis Using Endo- and Exo-proteases on Secondary Structure, Functional, and Antioxidant Properties of Chickpea Protein Hydrolysates. Journal of Food Measurment and Characterization 14: 343–352.
[12] Whitaker, J. R. 2003. Protelytic Enzymes. In: Handbook of Food Enzymology, JR Whitaker, AGJ Voragen, DWS Wong, Eds., Marcel Dekker, Inc., New York.
[13] Adler-Nissen, J. 1986. Enzymatic Hydrolysis of Food Proteins, Elsevier Applied Science Publisher Ltd., England.
[14] Greco Lorenzo, V. & Bronu Marco, N. 2008. Food Science and Technology: New Research. New York: Nova Science Publishers, Inc.
[15] Fisheries Dept, Malaysian Fisheries Department, Official Homepage 2010.
[16] Mat Jais, A. M., Dambisya, Y. M. & Lee, T. L. 1997. Antinociceptive Activity of Channa striatus (Haruan), Extracts in Mice. Journal of Ethnopharmacol 57: 125- 130.
[17] MolinA I, Toldra ́ F. Detection of proteolytic activity in microorganisms isolated from dry cured ham. J Food Sci 1992; 61: 1308-1310.
[18] Hultin HO, Kelleher SD, High efficiency alkaline protein extraction. US Patent 2000 6136,959.
[19] You, L., Zhao, M., Cui, C., Zhao, H. & Yang, B. 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguilicaudatus) protein hydrolysates. Innovative Food and Emerging Technologies10: 235-240.
[20] AOAC. 2005. Official methods of analysis. In: Methods 950.46 (39.1.02), 900.02A (38.1.04), 992.15 (39.1.16) and 960.39 (39.1.05), 18th edn (edited by W. Horwitz). Gaithersburg MD: Aoac Intl.
[21] Alaiz, M., Navarro, J. L., Girón, J. & Vioque, E. 1992. Amino acid analysis by high performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography 591: 181-186.
[22] Cohen, S. A., Meys, M. & Tarvin, T. L. 1988. The PicoTag Method. A Manual of Advanced Techniques for Amino Acid Analysis. Waters Chromatography Division, Millipore Corp., Milford, MA.
[23] Thiansilakul, Y, Benjakul, S. & Shahidi, F. 2007a. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. Journal of Food Biochemistry31: 266-287.
[24] Hoyle, N. T. & Merritt, J. H. 1994. Quality of fish protein hydrolysate from herring (Clupea harengus). Food Science 59: 76-79.
[25] Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biology and Chemistry 193: 265-75.
[26] Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science 66: 1219-1227.
[27] Huang, P H, Chen, J. Y. & Kuo, C. M. 2007. Three different hepcidins from tilapia, Oreochromis mossambicus: Analysis of their expressions and biological functions. Molecular Immunology 44:1922-1934.
[28] Schagger, H. & Von Jagow, G. 1987. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166: 368–379.
[29] Srikanya, A., Dhanapal, K., Sravani, K. & Madhavi, K. 2017. Praveen kumar GA. Study on Optimization of Fish Protein Hydrolysate Preparation by Enzymatic Hydrolysis from Tilapia Fish Waste Mince. International Journal of Current Microbiology and Applied Sciences 6 (12): 3220-3229.
[30] Amiza, M, A., Ow, Y. W. & Faazaz, A. L. 2013. Physicochemical Properties of silver catfish (Pangasius sp) Frame Hydrolysate. International Food Research Journal 20(3): 1255-1262.
[31] Kristinsson, H. G. & Rasco, B. A. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition 40: 43-81
[32] Alemán, A., Giménez, B., Monter, O. P. & Gómez-Guillén, M. C. 2012. Antioxidant activity of several marine skin gelatine. LWT-Food Science and Technology 44: 407-413.
[33] Pacheco-Aguilar, R., Mazorra-Manzano, M. A. & Ramirez-Suarez, J. C. 2008. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry109: 782-789.
[34] Suthasinee, N., Sittiwat, L., Manop, S. & Apinya, A. 2005. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering 70(4): 571-578.
[35] Choi, Y. J., Hur, S., Choi, B. D., Konno, K. & Park, J. W. 2007. Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of its hydrolysates. Journal of Food Science 74 (1): C17-C24.
[36] Souissi, N., Bougatef, A., Triki-Ellouz, Y. & Nasri, M. 2007. Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology 45(2): 187-194.
[37] Rebeca, B. D., Pena-Vera, M. T. & Diaz-Castaneda, M. 1991. Production of fish protein hydrolysates with bacterial proteases; yield and nutritional value. Journal of Food Science 56: 309-314.
[38] Rao, M. B., Tanksale, A. M., Gathe, M. S. & Deshpande, V. V. 1998. Molecular and biotechnological aspects of microbial proteases. Micrbiology Molecular Biology Reviews 62(3):597-635.
[39] Najafian, L.& Babji, A. S. 2018. Fractionation and identification of novel antioxidant peptides from fermented fish (Pekasam). Journal of Food Measurment and Charactrization 12 (3): 2174-2183.
[40] Kimmel JR, Smith E. L. Crystalline papain. I. Preparation, specificity, and activation. J Biol Chem 1954; 207: 515-30.
[41] Aluko, R. E. 2018. Food protein-derived peptides: Production, isolation, and purification. Proteins in Food Processing 389-412.
[42] Torruco-Uco, J., Chel-Guerrero, L., Martı ́nez-Ayala, A., Da ́ vila-Ortı ́z, G. & Betancur-Anconab, D. 2009. Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT-Food Science and Technology 42: 1597-1604.
[43] Balti, R., Bougatef, A., Hadj Ali, N. E., Ktari, N., Jellouli, K., Nedjar-Arroume, N., Dhulster, P. & Nasri, M. 2011. Comparative Study on Biochemical Properties and Antioxidative Activity of Cuttlefish (Sepia officinalis) Protein Hydrolysate Produced by Alcalase and Bacillus licheniformis NH1 Proteases. Journal of Amino Acids Article ID 107179, 11 pages.
[44] Gbogouri, G. A., Linder, M., Fanni, J. & Parmentier, M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. Journal of Food Chemistry and Toxicolology 69: 615-622.
[45] Tang, S., Zhou, X., Gouda, M., Cai, Z. & Jin, Y. 2019. Effect of Enzymatic Hydrolysis on the Solubility of Egg Yolk Powder from the Changes in Structure and Functional Properties. LWT-Food Science and Technology 110: 214–222.
[46] Alahmad, K., Xia, W., Jiang, Q., & Xu, Y. 2022. Effect of the Degree of Hydrolysis on Nutritional, Functional, and Morphological Characteristics of Protein Hydrolysate Produced from Bighead Carp (Hypophthalmichthys nobilis) Using Ficin Enzyme. Foods 11: 1-17.
[47] Tsai, J. S., Lin, T. C., Chen, J. L. & Pan, B. S. 2006. The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin I converting enzyme. Process Biochemistry 41(11): 2276-2281.
[48] Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Journal of Nature 227: 680-685.