مقایسه روش استخراج بر فعالیت آنتی اکسیدانی عصاره چای کوهی (Stachys lavandulifolia V.) و بهینه سازی شرایط تولید عصاره ریزپوشانی شده آن

نویسندگان
دانشگاه علوم کشاورزی و منابع طبیعی ساری، گروه علوم و صنایع غذایی
چکیده
در این پژوهش عصاره گیاه چای کوهی با کمک روش­های خیساندن، سیال فوق بحرانی، فراصوت، آب زیربحرانی و ماکروویو استخراج شد. بیشترین بازده استخراج (55/22%) و فنول کل (mg GA/g DM 50/80) در عصاره استخراج شده با کمک فراصوت مشاهده شد. فعالیت آنتی اکسیدانی غلظت­های مختلف عصاره با 100 ppm آنتی اکسیدان سنتزی TBHQ مقایسه شد که با افزایش غلظت عصاره فعالیت آنتی اکسیدانی افزایش یافت. نوع و درصد مواد دیواره (0، 50 و 100)، نسبت عصاره به مواد دیواره (1/0، 25/0 و 4/0 درصد وزنی/وزنی) و زمان فراصوت (2، 4 و 6 دقیقه) به عنوان سطوح متغیر مستقل و راندمان ریزپوشانی ترکیبات فنولی، اندازه نانوکپسول و پتانسیل زتا به عنوان پاسخ جهت بهینه سازی شرایط ریزپوشانی عصاره در نظر گرفته شدند. افزایش زمان فراصوت منجر به افزایش راندمان ریزپوشانی و کاهش اندازه کپسول شد. با افزایش نسبت عصاره به مواد دیواره نیز راندمان ریزپوشانی عصاره افزایش و اندازه ذرات کاهش یافت. نوع مواد دیواره بر راندمان، پتانسیل زتا و اندازه کپسول­ها تاثیر داشتند. شرایط بهینه برای ریزپوشانی عصاره چای کوهی به صورت 6 دقیقه فراصوت، نسبت عصاره به دیواره 4/0 و مقدار صمغ عربی و آلژینات به ترتیب 3/30 و 7/69 درصد بود. در شرایط بهینه راندمان ریزپوشانی 43/57 درصد، پتانسیل زتا 1/52- میلی ولت و اندازه ذرات 06/82 نانومتر بدست آمد. میزان ته نشینی و رهایش نانوکپسول طی دوره نگهداری افزایشی بود. از نظر ساختاری نانوکپسول عصاره چای ساختاری صاف و بهم پیوسته داشت که با توجه به راندمان بالای ریزپوشانی این نانوکپسول می­تواند به عنوان یک ترکیب آنتی اکسیدان به مواد غذایی اضافه شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of extraction method on antioxidant activity of mountain tea (Stachys lavandulifolia V.) extract and optimization condition of encapsulated extract production

نویسندگان English

reza esmaeilzadeh kenari
Zeynab Raftani Amiri
Ali Motamedzadegan
Jafar Milani
Jamshid Farmani
Reza Farahmandfar
Sari Agricultural Sciences and Natural Resources University, Department of Food Science and Technology
چکیده English

In this study, extracts of mountain tea were obtained by maceration, supercritical fluid, ultrasound assisted, subcritical water and microwave. The highest extraction efficiency (22.55%) and total phenolic content (80.50 mg GA/g DM) was observed in extract obtained via ultrasound assisted extraction. Antioxidant activity of different concentrations of extracts was compared with 100 ppm TBHQ synthetic antioxidant and an increased in concentration of extract increased antioxidant activity. Type and percentage of wall materials (0, 50 and 100), the ratio of extracts to wall materials (0.1, 0.25 and 0.4 w/w), and sonication time (2, 4 and 6 min) as independent variable levels and encapsulation efficiency of phenolic compounds, particle size of nanocapsule and zeta potential were considered as a response to optimization of encapsulation conditions of the extract. An increase in sonication time resulted in increased encapsulation efficiency and decreased particle size of capsule. As the ratio of extract to wall materials increased, the encapsulation efficiency of extract increased and particle size decreased. Type of wall materials has effect on encapsulation efficacy, zeta potential, and particle size of capsule. The optimum conditions for encapsulating of mountain tea extract were 6 min ultrasound; the ratio of extract to wall 0.4 and the amount of Arabic gum and alginate were 30.3% and 69.7% respectively. In optimum conditions, the encapsulation efficiency, Zeta potential and particle size were 57.43%, -52.1 mV and 82.06 nm. The amount of sedimentation and release of extract during the storage period was increasing. Nanocapsule has a smooth and interconnected structural that due to high encapsulation efficiency this nanocapsule can be added to food as an antioxidant compound.

کلیدواژه‌ها English

alginate
Mountain tea
Encapsulation
Gum arabic
nanocapsule
[1] Sadrmomtaz, A., Meshkatalsadat, M.H. and Taherparvar, P. (2011). Comparison of volatile components of Stachys lavandulifolia vahl obtained by MWHD and HD techniques. Dig J Nanomater Biostruct, 6(3), 1343-1348.
[2] Kaderides, K., Goula, A.M. and Adamopoulos, K.G. (2015). A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innovative Food Science & Emerging Technologies, 31, 204-215.
[3] Khazaei, K.M., Jafari, S.M., Ghorbani, M. and Kakhki, A.H. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color. Carbohydrate polymers, 105, 57-62.
[4] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S. and Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806-1815.
[5] Esfanjani, A.F., Jafari, S.M., Assadpoor, E. and Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 165, 149-155.
[6] Prata, A.S., Garcia, L., Tonon, R.V. and Hubinger, M.D. (2013). Wall material selection for encapsulation by spray drying. Journal of Colloid Science and Biotechnology, 2(2), 86-92.
[7] Opasanon, S., Muangman, P. and Namviriyachote, N. (2010). Clinical effectiveness of alginate silver dressing in outpatient management of partial‐thickness burns. International wound journal, 7(6), 467-471.
[8] Williams, P.A. and Phillips, G.O. (2009). Introduction to food hydrocolloids. In Handbook of hydrocolloids (1-22). Woodhead Publishing.
[9] Nayak, A.K., Das, B. and Maji, R. (2012). Calcium alginate/gum Arabic beads containing glibenclamide: Development and in vitro characterization. International journal of biological macromolecules, 51(5), 1070-1078.
[10] Esmaeilzadeh Kenari, R., Mohsenzadeh, F. and Amiri, Z.R. (2014). Antioxidant activity and total phenolic compounds of Dezful sesame cake extracts obtained by classical and ultrasound‐assisted extraction methods. Food science & nutrition, 2(4), 426-435.
[11] Goli, A.H., Barzegar, M. and Sahari, M.A. (2005). Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food chemistry, 92(3), 521-525.
[12] Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J.P. and Mason, T.J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics sonochemistry, 11(3-4), 261-265.
[13] Roudsari, M.H. (2007). Subcritical water extraction of antioxidant compounds from canola meal (Doctoral dissertation).
[14] Inoue, T., Tsubaki, S., Ogawa, K., Onishi, K. and Azuma, J.I. (2010). Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chemistry, 123(2), 542-547.
[15] Mc Donald, K. and Sun, D.W. (2001). Effect of evacuation rate on the vacuum cooling process of a cooked beef product. Journal of Food Engineering, 48(3), 195-202.
[16] Amarowicz, R., Pegg, R.B., Rahimi-Moghaddam, P., Barl, B. and Weil, J.A. (2004). Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food chemistry, 84(4), 551-562.
[17] Benzie, I.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
[18] Carneiro, H.C., Tonon, R.V., Grosso, C.R. and Hubinger, M.D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451.
[19] Chranioti, C., Nikoloudaki, A. and Tzia, C. (2015). Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydrate polymers, 127, 252-263.
[20] Robert, P. and Fredes, C. (2015). The encapsulation of anthocyanins from berry-type fruits. Trends in foods. Molecules, 20(4), 5875-5888.
[21] Joye, I.J., Davidov-Pardo, G. and McClements, D.J. (2015). Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids, 49, 127-134.
[22] Kalušević, A., Lević, S., Čalija, B., Pantić, M., Belović, M., Pavlović, V., Bugarski, B., Milić, J., Žilić, S. and Nedović, V. (2017). Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder. Journal of microencapsulation, 34(5), 475-487.
[23] Mohammadi, A., Jafari, S.M., Esfanjani, A.F. and Akhavan, S. (2016). Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food chemistry, 190, 513-519.
[24] Esfanjani, A.F. and Jafari, S.M. (2016). Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids and Surfaces B: Biointerfaces, 146, 532-543.
[25] Rafiee, M., Naseri, L., Bakhshi, D. and Alizadeh, A. (2012). Phenolic compounds and antioxidant activity of some Iranian and commercial apple varieties in West Azarbaijan province.
[26] Rahimi Khoigani, S., Rajaei, A. and Goli, S.A.H. (2017). Evaluation of antioxidant activity, total phenolics, total flavonoids and LC–MS/MS characterisation of phenolic constituents in Stachys lavandulifolia. Natural product research, 31(3), 355-358.
[27] Khanavi, M., Hajimahmoodi, M., Cheraghi-Niroomand, M., Kargar, Z., Ajani, Y., Hadjiakhoondi, A. and Oveisi, M.R. (2009). Comparison of the antioxidant activity and total phenolic contents in some Stachys species. African Journal of Biotechnology, 8(6).
[28] Tundis, R., Bonesi, M., Pugliese, A., Nadjafi, F., Menichini, F. and Loizzo, M.R. (2015). Tyrosinase, acetyl-and butyryl-cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents. Records of Natural Products, 9(1), 81.
[29] Taghvaei, M., Jafari, S.M., Mahoonak, A.S., Nikoo, A.M., Rahmanian, N., Hajitabar, J. and Meshginfar, N. (2014). The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT-Food Science and Technology, 56(1), 124-130.
[30] Yang, L., Jiang, J.G., Li, W.F., Chen, J., Wang, D.Y. and Zhu, L. (2009). Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. Journal of separation science, 32(9), 1437-1444.
[31] Gupta, V.K. and Sharma, S.K. (2006). Plants as natural antioxidants.
[32] Jun, X., Deji, S., Ye, L. and Rui, Z. (2011). Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods. International Journal of Pharmaceutics, 408(1-2), 97-101.
[33] Meshkatalsadat, M.H., Sajjadi, S.E. and Amiri, H. (2007). Chemical constituents of the essential oils of different stages of the growth of Stachys lavandulifolia Vahl. from Iran. Pak J Biol Sci, 10(16), 2784-6.
[34] Zhao, Z., Liu, P., Wang, S. and Ma, S. (2017). Optimization of ultrasound, microwave and Soxhlet extraction of flavonoids from Millettia speciosa Champ. and evaluation of antioxidant activities in vitro. Journal of Food Measurement and Characterization, 11(4), 1947-1958.
[35] Aleebrahim-Dehkordy, Elahe. and Rafieian-Kopaei, Mahmoud. and Bahmani, Mahmoud. and Abbasi, Safieh. (2016). Antioxidant activity, total phenolic and flavonoid content, and antibacterial effects of Stachys lavandulifolia Vahl. Flowering shoots gathered from Isfahan. Journal of Chemical and Pharmaceutical Sciences, 9 (4). 3403-3408.
[36] Baradaran, A., Nasri, H., Nematbakhsh, M. and Rafieian-Kopaei, M. (2014). Antioxidant activity and preventive effect of aqueous leaf extract of Aloe Vera on gentamicin-induced nephrotoxicity in male Wistar rats. La clinica terapeutica, 165(1), 7-11.
[37] Burchard, W. (2001). Structure formation by polysaccharides in concentrated solution. Biomacromolecules, 2(2), 342-353.
[38] Carneiro-da-Cunha, M.G., Cerqueira, M.A., Souza, B.W., Carvalho, S., Quintas, M.A., Teixeira, J.A. and Vicente, A.A. (2010). Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydrate Polymers, 82(1), 153-159.
[39] Mohamed, H.N., Mustafa, S., Fitrianto, A. and Manap, Y.A. (2017). Development of alginate–gum arabic beads for targeted delivery of protein.
[40] McConaughy, S.D., Stroud, P.A., Boudreaux, B., Hester, R.D. and McCormick, C.L. (2008). Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation. Biomacromolecules, 9(2), 472-480.
[41] Carneiro-da-Cunha, M.G., Cerqueira, M.A., Souza, B.W., Teixeira, J.A. and Vicente, A.A. (2011). Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydrate polymers, 85(3), 522-528.
[42] Gils, P.S., Ray, D. and Sahoo, P.K. (2010). Designing of silver nanoparticles in gum arabic based semi-IPN hydrogel. International journal of biological macromolecules, 46(2), 237-244.
[43] McGhie, T.K. and Walton, M.C. (2007). The bioavailability and absorption of anthocyanins: towards a better understanding. Molecular nutrition & food research, 51(6), 702-713.
[44] Mohammadi, A., Jafari, S.M., Assadpour, E. and Esfanjani, A.F. (2016). Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International journal of biological macromolecules, 82, 816-822.
[45] Bonnet, M., Cansell, M., Berkaoui, A., Ropers, M.H., Anton, M. and Leal-Calderon, F. (2009). Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids, 23(1), 92-101.
[46] Betz, M., Steiner, B., Schantz, M., Oidtmann, J., Mäder, K., Richling, E. and Kulozik, U. (2012). Antioxidant capacity of bilberry extract microencapsulated in whey protein hydrogels. Food Research International, 47(1), 51-57.
[47] Liu, Z., Jiao, Y., Wang, Y., Zhou, C. and Zhang, Z. (2008). Polysaccharides-based nanoparticles as drug delivery systems. Advanced drug delivery reviews, 60(15), 1650-1662