[1] Seku, K., Hussaini, S.S., Hussain, M., Siddiqui, M.A., Golla, N., Ravinder, D., Reddy, B. 2022. Synthesis of Frankincense gum stabilized AgNPs by microwave irradiation and their catalytic, antioxidant, and antibacterial properties. Physica E: Low-dimensional Systems and Nanostructures, 140: 115169. https://doi.org/10.1016/j.physe.2022.115169.
[2] Umar, S., Umar, K., Sarwar, A. H. M. G., Khan, A., Ahmad, N., Ahmad, S. 2014. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine, 21(6): 847–856.
[3] Shahidpour, F., Zare Mehrjerdi, F., Mozayan, M.R., Marefati, N., Hosseini, M. 2021. The effects of frankincense extract on depression and anxiety-like behaviors induced by lipopolysaccharide in rats. Learning and Motivation, 73: 101708. https://doi.org/10.1016/j.lmot.2021.101708
[4] Kheirkhah, H., Baroutian, S., Quek, S.Y. 2019. Evaluation of bioactive compounds extracted from Hayward kiwifruitpomace by subcritical water extraction. Food Bioprod. Process., 115: 143–153.
[5] Kora, A.L., Rastogi, L. 2018. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arabian Journal of Chemistry, 11: 1097-1106.
[6] Weber, C.C., Reising, K., Müller, W. E., Schubert-Zsilavecz, M., Abdel-Tawab, M. 2006. Modulation of Pgp function by boswellic acids. Planta Medica Journal, 72 (06), 507–513.
[7] Peng, S., Song, Z., Wang, C., Liang, D., Wan, X., Liu, Z., Lu, A., Ning, Z. 2022. Frankincense vinegar-processing improves the absorption of boswellic acids by regulating bile acid metabolism. Phytomedicine 98: 153931. https://doi.org/10.1016/j.phymed.2022.153931
[8] Wang, Y., Ye, Y., Wang, L., Yin, W., Liang, J. 2021. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology. Food Bioscience, 44: 101394. https://doi.org/10.1016/j.fbio.2021.101394
[9] Nastic, N., Svarc-Gajic, J., Delerue-Matos, C., Morais, S., Barroso, M.F., Moreiram M.M. 2018. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). The Journal of Supercritical Fluids, 138: 200-206.
[10] Svarc-Gajić, J., Stojanović, Z., Carretero, A.S., Román, D.A., Borrás, I., Vasiljević, I. 2018. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis, J. Food Eng. 119: 525–532.
[11] Liang, X., Fan, Q. 2013. Application of sub-critical water extraction in pharmaceutical industry. J. Mater. Sci. Chem.Eng. 1, 1.
[12] Todd, R., Baroutian, S. 2017. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. J. Clean. Prod. 158,349–358.
[13] Guthrie, F., Wang, Y., Neeve, N., Quek, S.Y., Mohammadi, K., Baroutian, S. 2020. Recovery of phenolic antioxidants from green kiwi fruit peel using subcritical water extraction. Food and Bioproducts Processing, 122: 136-144.
[14] Rodrigues, A.L., Matias, A.A., Paiva, A. 2021. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food and Bioproducts Processing, 130: 154-163.
[15] Shaddel, R., Maskooki, A., Haddad-Khodaparast, M.H., Azadmard-Damirchi, S., Mohamadi, M., Fathi-Achachlouei, B. 2014. Optimization of Extraction Process of Bioactive Compounds from Bene Hull Using Subcritical Water. Food Science and biotechnology, 23 (5): 1459-1468.
[16] Asl, A.H., M.J.M.T.-A.I.S.E. Khajenoori, Modeling, E.O.N. 2013.Subcritical Water Extraction., pp. 459–487.
[17] Abdelmoez, W., Nage, S.M., Bastawess, A., Ihab, A., Yoshida, H.J. 2014. Subcritical water technology for wheat straw hydrolysis to produce value added products. J. Clean. Prod. 70, 68–77.
[18] Song, R., Ismail, M., Baroutian, S., Farid, M. 2018. Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food Bioprocess 11, 1895–1903.
[19] Murugkar, D. A., Zanwar, A.A., Shrivastava, A. 2021. Effect of nano-encapsulation of flaxseed oil on the stability, characterization and incorporation on the quality of eggless cake. Applied Food Research, 1: 100025. https://doi.org/10.1016/j.afres.2021.100025.
[20] Mohammadi, M., Ghorbani, M., Beigbabaei, A., Yeganehzad, S., Sadeghi-Mahoonak, A. 2019. Investigation effects of extracted compounds from shell and cluster of pistachio nut on the inactivation of free radicals. Heliyon, 5: DOI: https://doi.org/10.1016/j.heliyon.2019.e02438.
[21] Ghazanfari, N., Mortazavi, S.A., Tabatabaei Yazdi, F., Mohammadi, M. 2020. Microwave-assisted hydrodistillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity. Heliyon, 6 (9): DOI: https://doi.org/10.1016/j.heliyon.2020.e04893
[22] Gandon-Ros, G., Soler, A., Aracil, I., Gomez-Rico, M.F., Conesa, J.A. 2021. Improving efficiency and feasibility of subcritical water debromination of printed circuit boards E-waste via potassium carbonate adding. Journal of Cleaner Production, 319: 128605, https://doi.org/10.1016/j.jclepro.2021.128605.
[23] Hao, G., Cao, W., Lia, T., Chen, J., Zhang, J., Weng, W., Osako, K., Ren, H. 2019. Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. The Journal of Supercritical Fluids, 147: 17-23. https://doi.org/10.1016/j.supflu.2019.02.007.
[24] Li, B., Akram, M., Al-Zuhair, S., Elnajjar, E., Munir, M.T. 2020. Subcritical water extraction of phenolics, antioxidants and dietary fibres from waste date pits. Journal of Environmental Chemical Engineering, 8: 104490. https://doi.org/10.1016/j.jece.2020.104490.
[25] Basile, A., Jim´enez-Carmona, M.M., Clifford, A.A. 1998. Extraction of rosemary by superheated water, J. Agric. Food Chem. 46 (12) (1998) 5205–5209.
[26] Rodríguez-Meizoso, I., Marin, F.R., Herrero, M., Senorans, F.J., Reglero, G., Cifuentes, A., Ibanez, E. 2006. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization, J. Pharm. Biomed. Anal. 41 (5): 1560–1565.
[27] Kim, S.J., Matsushita, Y., Fukushima, K., Aoki, D., Yagami, S., Yuk, H.G., Lee, S.C. 2014. Antioxidant activity of a hydrothermal extract from watermelons, LWT-Food Sci. Technol., 59 (1): 361–368.
[28] Giombelli, C., Iwassa, I.J., da Silva, C., Bolanho Barros, B.C. 2020. Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds, J. Supercrit. Fluids, 165, 104985.
[29] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., Nasri, M. 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases, Food Chem. 114 (2009) 1198–1205, https://doi.org/10.1016/j.foodchem.2008.10.075.
[30] Iwassa, I.J., dos Santos Ribeiro, M.A., Meurer, E.C., Cardozo-Filho, L., Bolanho, B.C., da Silva, C. 2019. Effect of subcritical water processing on the extraction of compounds, composition, and functional properties of asparagus by-product, J. Food Process Eng. 42 (4): e13060.
[31] Tariq, A.L., Reyaz, A.L. 2012. Significances and importance of phytochemical present in Terminalia chebula. Intern. J. Drug Develop. Res. 5 (3), 256–262.
[32] Acimovic, M., Seregelj, V., Sovljanski , O., Saponjac , V.T., Gajic, J.S., Brezo-Borjan, T., Pezo, L. 2021. In vitro antioxidant, antihyperglycemic, anti-inflammatory, and antimicrobial activity of Satureja kitaibelii Wierzb. ex Heuff. Subcritical water extract. Industrial Crops & Products 169: 113672. https://doi.org/10.1016/j.indcrop.2021.11367.
[33] Bakkali, f., Daomar, D. Averbeck, S. and Averbeck, B. 2008. Biological effects of essential oils- A review. Food Chem. Toxicol. 46: 446-457.
[34] Ali Mohammad Zadeh, M., Ali Doust, M., Khandaghi, J. 2020. A study of antimicrobial effects of alcoholic extract and essential oil of caraway (Bunium persicum Boiss) on selected species of bacteria and molds in lactic cheese. Journal of Food Microbiology, 7 (4): 33-46.
[35] Tadros, T., Izquierdo, R., Esquena, J., Solans, C. 2004. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 303–318.
[36] Kouassi, G. K. , Teriveedhi, V. K. , Milby, C. L. , Ahmad, T. , Boley, M. S., Gowda, N. M., Terry, R. J. 2012. Nano-microencapsulation and controlled release of linoleic acid in biopolymer matrices: Effects of the physical state, water activity, and quercetin on oxidative stability. Journal of Encapsulation and Adsorption Sciences, 02 (01), 1–10.