بررسی خواص آنتی‌اکسیدانی و ضد ‌میکروبی تیمول و رسوراترول ریزپوشانی شده با نانوذرات کامپوزیتی زئین- کازئینات

نویسندگان
1 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
2 گروه بیوتکنولوژی میکروبی صنعتی، سازمان تحقیق و بیوتکنولوژی صنعتی، مشهد، ایران
چکیده
هدف از این مطالعه درون‌پوشانی تیمول و رسوراترول تهیه شده با نانوذرات کامپوزیتی زئین- کازئینات و بررسی خواص آنتی‌اکسیدانی و ضد میکروبی آن‌ها بود. بدین منظور برای تهیه نانوذرات کامپوزیتی زئین- کازئینات از روش دیسپرسیون مایع - مایع استفاده گردید. در این مطالعه تاثیر غلظت‌های مختلف تیمول و رسوراترول (صفر تا 100 درصد) و نسبت‌های مختلف هسته به دیواره (1 : 10 و 1: 20) بر توانایی مهار رادیکال‌های آزاد DPPH، قدرت احیاکنندگی یون آهن و فعالیت ضدمیکروبی بر باکتری‌های اشریشیا کلی و لیستریا مونوسیتوژنز در محیط کشت و شیر مورد بررسی قرار گرفت. نتایج نشان داد که نمونه حاوی 75 درصد تیمول و 25 درصد رسوراترول با نسبت 1 به 10 هسته به دیواره، دارای بیشترین میزان توانایی مهار رادیکال‌های آزاد DPPH و قدرت احیاکنندگی یون آهن بود و مشخص گردید که افزایش غلظت دیواره به‌جز نمونه حاوی 75 درصد تیمول منجر به افزایش توانایی مهار رادیکال‌های آزاد DPPH و قدرت احیاکنندگی یون آهن گردید. باکتری‌های لیستریا موجود در محیط کشت TSB حساس‌ترین باکتری‌ به نمونه‌های تهیه‌شده بود و قوی‌ترین نانوذرات تهیه شده که کمترین MIC و MBC را داشت به نمونه حاوی 75 درصد تیمول و 25 درصد رسوراترول با نسبت هسته به دیواره 1 به 10 اختصاص داشت و اغلب، باکتری‌های موجود در شیر نسبت به محیط کشت به این نانوذرات مقاوم‌تر بودند. در نهایت می‌توان گفت که نمونه حاوی 75 درصد تیمول و 25 درصد رسوراترول با نسبت هسته به دیواره 1 به 10 می‌تواند به‌عنوان ترکیبی با قدرت آنتی‌اکسیدانی و ضد میکروبی مناسب انتخاب گردد.

هدف از این مطالعه درون‌پوشانی تیمول و رسوراترول تهیه شده با نانوذرات کامپوزیتی زئین- کازئینات و بررسی خواص آنتی‌اکسیدانی و ضد میکروبی آن‌ها بود. بدین منظور برای تهیه نانوذرات کامپوزیتی زئین- کازئینات از روش دیسپرسیون مایع - مایع استفاده گردید. در این مطالعه تاثیر غلظت‌های مختلف تیمول و رسوراترول (صفر تا 100 درصد) و نسبت‌های مختلف هسته به دیواره (1 : 10 و 1: 20) بر توانایی مهار رادیکال‌های آزاد DPPH، قدرت احیاکنندگی یون آهن و فعالیت ضدمیکروبی بر باکتری‌های اشریشیا کلی و لیستریا مونوسیتوژنز در محیط کشت و شیر مورد بررسی قرار گرفت. نتایج نشان داد که نمونه حاوی 75 درصد تیمول و 25 درصد رسوراترول با نسبت 1 به 10 هسته به دیواره، دارای بیشترین میزان توانایی مهار رادیکال‌های آزاد DPPH و قدرت احیاکنندگی یون آهن بود و مشخص گردید که افزایش غلظت دیواره به‌جز نمونه حاوی 75 درصد تیمول منجر به افزایش توانایی مهار رادیکال‌های آزاد DPPH و قدرت احیاکنندگی یون آهن گردید. باکتری‌های لیستریا موجود در محیط کشت TSB حساس‌ترین باکتری‌ به نمونه‌های تهیه‌شده بود و قوی‌ترین نانوذرات تهیه شده که کمترین MIC و MBC را داشت به نمونه حاوی 75 درصد تیمول و 25 درصد رسوراترول با نسبت هسته به دیواره 1 به 10 اختصاص داشت و اغلب، باکتری‌های موجود در شیر نسبت به محیط کشت به این نانوذرات مقاوم‌تر بودند. در نهایت می‌توان گفت که نمونه حاوی 75 درصد تیمول و 25 درصد رسوراترول با نسبت هسته به دیواره 1 به 10 می‌تواند به‌عنوان ترکیبی با قدرت آنتی‌اکسیدانی و ضد میکروبی مناسب انتخاب گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the antioxidant and antimicrobial properties of thymol and resveratrol microcoated with zein-caseinate composite nanoparticles

نویسندگان English

Fatemeh Sadati khadar 1
Elham Mahdian 1
esmaeil ataye salehi 1
Reza Karazhyan 2
1 Food Science and Technology department, Quchan Branch, Islamic Azad University, Quchan, Iran
2 assistant professor, department of industrial microbial biotechnology, research institute for industrial biotechnology, ACECR, Mashhad, Iran.
چکیده English



The present study aimed to encapsulate thymol and resveratrol prepared with zein-caseinate composite nanoparticles and to investigate their antioxidant and antimicrobial properties. For this purpose, liquid-liquid dispersion method was used to prepare zein-caseinate composite nanoparticles. In this study, the effect of different concentrations ratio of thymol and resveratrol (zero to 100%) and different ratios of core to coating (1:10 and 1:20) on the ability to inhibit DPPH free radicals, the reducing power of iron ions and antimicrobial activity on Escherichia coli and Listeria monocytogenes was investigated in culture media and milk. The results showed that the sample containing 75% thymol and 25% resveratrol with a ratio of 1 to 10 of core to coating had the highest ability to inhibit DPPH free radicals and the reducing power of iron ions, and it was found that the increase in the coating concentration except for the sample containing 75% thymol, led to an increase in the Inhibition power of DPPH free radicals and reducing power of iron ion. Listeria bacteria in the TSB culture medium were the most sensitive bacteria to the prepared samples, and the strongest prepared nanoparticles, which had the lowest MIC and MBC, belonged to the sample containing 75% thymol and 25% resveratrol with a core-to-wall ratio of 1:10, and in most samples, The bacteria in milk were more resistant to these nanoparticles than the culture medium. Finally, it can be said that the sample containing 75% thymol and 25% resveratrol with a core-to-wall ratio of 1 to 10 can be selected as a combination with appropriate antioxidant and antimicrobial power.

کلیدواژه‌ها English

Thymol
resveratrol
Nanoencapsulation
Antimicrobial
1-Wasowicz, E., Sowicz, E.W., Gramza, A., Hêoe, M., Jele, H. H., Korczak, J., Maecka, M., Mildner- Szkudlarz, S., Rudzioska, M., Samotyja, U. and Zawirska-Wojtasiak, R. 2004. Oxidation of Lipids in foods. Polish journal of food and nutrition sciences. 13 (54): 87–100.
2- Marchese, A., Orhan, I.E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., Izadi, M. and Nabavi, S.M. 2016. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry. 402-414.
3- Miladi, H., Zmantar, T., Chaabouni, Y., Fedhila, K., Bakhrouf, A., Mahdouani, K. and Chaieb, K. 2016. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food borne pathogens. Mic Pathogen. 99: 95-100.
4- Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology. 94: 223– 253.
5- Helander, I.M., Alakomi, H.L., Latva-Kala, K., Mattila-Sandholm, T., Pol, L., Smid, E.J., Gorris, L.G.M. and Von Wright, A. 1998. Characterization of the action of selected essential oil components on Gram negative bacteria Journal of Agriculitural Food Chemistry. 46: 3590–3595.
6- Cui, X.P., By, L., Gao, I., Wei, H.Q. and Wang, N. 2008. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. Journal of Nutrition Science and Vitaminology. 54(4): 198-206.
7- Nkuhn Velten, R. and Schermer, W. 1984. Effect of stz - induced hyperglycaemia on androgen - binding protein in rat testis and epididymis. EMBO Journal or Biomedical Ethics Ontology. 26: 300-303.
8- Winkler, G. and Kempler, P. 2010. Pathomechanism of diabetic neuropathy background of the pathogenesis-oriented therapy. Orvosi Hetilap Research. 151(24): 971-981.
9- Boziaris, I.S. 2014. Novel food preservation and microbial assessment techniques. CRC Press. 468 p.
10- Ahmadi, E., Elhamirad, A. H., Mollania, N., Saeidi Asl, M. R. and Pedramnia, A. 2021. Incorporation of white tea extract in nano‐liposomes: optimization, characterization, and stability. Journal of the Science of Food and Agriculture. 1-14.
11- Calvo, P., Hernandez, T., Lozano, M. and Gomez, D.G. 2010. Microencapsulation of extra-virgin olive oil by spray-drying: Influence of wall material and olive quality. European Journal of Lipid Science and Technology. 112: 852-858.
12- Horváth, H., Kovács, A.W., Riddick, C. and Présing, M. 2013. Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. European Journal of Phycology. 48: 278-286.
13- Keller, B.C. 2001. Liposomes in nutrition. Trends in Food Science Technology. 12: 25-31.
14- Mozafari, M.R., Johnson, C., Hotziantoniou, S. and Demetzos, C. 2008. Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Reserch. 18: 309-327.
15- Fathi, B., Mozafari, M. and Mohebbi, M. 2011. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Science Technology. 1-15.
16- Horn, D. and Rieger, J. 2001. Organic nanoparticles in the aqueous phase - theory, experiment, and use. Angewandte Chemistry Internatinal. 40 (23): 4330-4361.
17- Yurdugul, S., and Mozafar, M. R. 2004. Recent advances in micro- and nanoencapsulation of food ingredients. Cellular and molecular biology letters. 9: 64-65.
18-Corradini, E.A., Souto de Medeiros, E., Carvalho, A.J.F., Curvelo, A.A.S. and Mattoso, L.H.C. 2006. Mechanical and morphological characterization of starch/zein blends plasticized with glycerol. Journal of Applied Polymer Science. 101: 4133–4139.
19-Torres-Giner, S., Gimenez, E. and Lagaron, J.M. 2008.Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids. 22: 601–614.
20- Lawton, J.W. 2002. Zein: A history of processing and use. Cereal Chemistry. 79: 1–18.
21- Shukla, R. and Cheryan, M. 2001. Zein: the industrial protein from corn. Industrial crops and products. 13: 171-192.
22- Haratifar, S. and Guri, A. 2017. 5-Nanocapsule formation by caseins A2-Jafari, Seid Mahdi. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Academic Press, pp. 140e164.
23- Forrest, A., Yada, Y. and Rousseau, D. 2005. Interactions of vitamin D3 with bovine β-lactoglobulin A and β-casein. Food Chemistry. 53: 8003-8009.
24- Zhang, Y.Q., Niu, Y.G., Luo, Y.C., Ge, M., Yang, T., Yu, L.L. and Wang, Q. 2014. Fabrication, characterization and antimicrobial activities of thymolloaded zein nanoparticles stabilized by sodium caseinateechitosan hydrochloride double layers. Food Chemistry. 142: 269-275.
25- Li, K.K., Yin, S.W., Yin, Y.C., Tang, C.H., Yang, X.Q. and Wen, S.H. 2013. Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. Journal of Food engineering. 119(2): 343-352.
26- Lu, J., Li, T., Ma, L., Li, S., Jiang, W., Qin, W., Li, S., Li, Q., Zhang, Z. and Wu, H. 2021. Optimization of heat-sealing properties for antimicrobial soybean protein isolate film incorporating diatomite/thymol complex and its application on blueberry packaging.Food Packaging and Shelf Life. 29: https://doi.org/10.1016/j.fpsl.2021.100690.
27- Ai, Y., Fang, F., Zhang, L. and Liao, H. 2022. Antimicrobial activity of oregano essential oil and resveratrol emulsions co-encapsulated by sodium caseinate with polysaccharide.Food Control. 137. https://doi.org/10.1016/j.foodcont.2022.108925
28- Xue, J., Zhang, Y., Huang, G., Liu, J., Slavin, M. and Yu, L. L. 2018. Zeincaseinate composite nanoparticles for bioactive delivery using curcumin as a probe compound. Food hydrocolloids, 83: 25-35.
29- Wu, Y., Luo, Y. and Wang, Q. 2012. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquideliquid dispersion method. LWT - Food Science and Technology. 48: 283-290.
30- Huange, B., Jingesheng, H., Xiaoquan, B., Hong, Z., Xincheng, Y. and Youwei, W. 2011. Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf. Meat science. 87: 46- 53.
31- Xue, J., Davidson, P.M. and Zhong, Q. 2017. Inhibition of Escherichia coli O157: H7 and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin. Food control. 73: 1499-1506
32- Zamani, M., Delfani, A.M. and Jabbari, M. 2018.Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 201: 288-299.
33- Vlachogianni, I.O., Fragopoulou, E., Kostakis, I.K. and Antonopoulou, S. 2015. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. Food Chemistry. 177: 165-173.
34- AlBasher, G., Abdel-Daim, M.M. Almeer, R., Ibrahim, K.A., Hamza, R.Z., Bungau, S. and Aleya, L. 2020. Synergistic antioxidant effects of resveratrol and curcumin against fipronil-triggered oxidative damage in male albino rats. Environmental Science and Pollution Research. 27(6): 6505-6514.
35- Mikstacka, R., Rimando, A.M. and Ignatowicz, E. 2010. Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods for Human Nutrition. 65(1): 57-63.
36- Skroza, D., Mekinic, I.G., Svilovic, S., Simat, V. and Katalinic. V. 2015. Investigation of the potential synergistic effect of resveratrol with other phenolic compounds: A case of binary phenolic mixtures. Journal of food composition and analysis. 38: 13-18.
37- Oh, W.Y. and Shahidi, F. 2017. Lipophilization of resveratrol and effects on antioxidant activities. Journal of agricultural and food chemistry. 65(39): 8617-8625.
38- Wu, W., Kong, X., Zhang, C., Hua, Y., Chen, Y. and Li, X. 2020. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride. LWT. 129: 109532.
39- Yildiz, S.,Turan, S., Kiralan, M. and Ramadan, M.F. 2021. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. Journal of Food Measurement and Characterization. 15(1): 621-632.
40- Berenji, R.H., Pezeshki, A., Ghanbarzadeh, B., Mohammadi, M., Azar, M.T., Hamishehkar, H., Azar, F.A. and Ghorbani, M. 2021. Resveratrol entrapped food grade lipid nanocarriers as a potential antioxidant in a mayonnaise. Food Bioscience. 41: 101041.
41- Siregar, T.M., Budianto, E., Cahyana, H. and Wibowo, W. 2018. Synthesis and antioxidant activity of prenylated resveratrol. Rasayan Journal of Chemistry. 11(4): 1765-1770.
42- Perez-Roses, R., Risco, E., Vila, R., Penalver, P. and Canigueral, S. 2016. Biological and nonbiological antioxidant activity of some essential oils. Journal of agricultural and food chemistry. 64(23): 4716-4724.
43- Colica, C., Milanović, M., Milić, N., Aiello, V., De Lorenzo, A. and Abenavoli, L. 2018. A systematic review on natural antioxidant properties of resveratrol. Natural product communications. 13(9): 1934578X1801300923.
44- Ma, D.S., Tan, L.T. H., Chan, K.G., Yap, W.H., Pusparajah, P., Chuah, L.H., Ming, L.C., Khan, T. M., Lee, L.H. and Goh, B.H. 2018. Resveratrol—potential antibacterial agent against foodborne pathogens. Frontiers in Pharmacology. 9: 1-16.
45- Vestergaard, M. and Ingmer, H. 2019. Antibacterial and antifungal properties of resveratrol. International Journal of Antimicrobial Agents. 53(6): 716-723.
46- Arioli, S., Montanari, C., Magnani, M., Tabanelli, G., Patrignani, F., Lanciotti, R., Mora, D. and Gardini, F. 2019. Modelling of Listeria monocytogenes Scott A after a mild heat treatment in the presence of thymol and carvacrol: Effects on culturability and viability. Journal of Food Engineering. 240: 73-82.
47- Abbaszade, S., Sharifzadeh, A. and Bagheri, M. 2019. The study of antimicrobial effect of Thymol, Carvacrol, Eugenol and Menthol on food spoilage bacteria in agricultural crops and dairy products. Journal of Food Science and Technology. 91(16): 283-290. (in Persian)