تولید شربت گلوکزی از طریق هیدرولیز آنزیمی مخلوط های آرد ذرت سخت و نرم و ارزیابی ویژگی های آن به عنوان شربت مقرون به صرفه اقتصادی

نویسندگان
1 مرکز آموزش علمی کاربردی زرماکارون.
2 گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی.
3 گروه علوم و صنایع غذایی، واحد ورامین، دانشگاه آزاد اسلامی.
4 بخش تحقیق و توسعه، شرکت گندم کوب.
5 بخش تحقیق و توسعه، شرکت صنعتی زرماکارون.
چکیده
مشتقات نشاسته ذرت ازجمله شربت­های گلوکزی امروزه به­ طور گسترده ­ای در صنایع غذایی استفاده­ می­شوند. شربت گلوکز نه­ تنها به­ دلیل قدرت شیرین­ سازی و ارزش غذایی، بلکه به­ دلیل خواص عملکردی (تثبیت رطوبت ، قابلیت نرم­ کنندگی، بهبود بافت و جلوگیری از تبلور ساکارز) در صنایع غذایی مورداستفاده قرارمی­گیرد. برای تولید شربت گلوکز معمولاً ذرت آردی (نرم) استفاده ­می­شود ، اما بیشتر ذرت وارداتی در ایران ذرت سخت است که در تمام سال موجود است و لذا استفاده از هر دو نوع آرد ذرت اجتناب­ ناپذیر خواهدبود. بنابراین هدف از این مطالعه، بررسی تأثیر استفاده از آرد ذرت سخت و آردی (نرم) برای تولید شربت گلوکز بود. چهار تیمار شامل آرد سفت + آرد نرم در چهار نسبت 30٪ + 70٪ ، 50٪ + 50٪ ، 70٪ + 30٪ و 100٪ آرد نرم به­عنوان شاهد تهیه­ شد و خصوصیات فیزیکوشیمیایی و ارگانولپتیکی شربت­های تولیدی موردارزیابی قرارگرفت. مطابق­ با نتایج به­ دست­ آمده، استفاده از آرد ذرت سخت بر ویژگی­ های فیزیکوشیمیایی و ارگانولپتیکی نمونه ­ها به­ طور معناداری تأثیرگذار بود (P<0.05). با افزایش نسبت آرد ذرت سخت، میزان DE، مواد جامد محلول و pH شربت­های گلوکزی به­ طور قابل­ توجهی کاهش ­یافت (P<0.05). همچنین افزایش پارامترهای رنگی و مقادیر خاکستر سولفاته­ شده در شربت­های تولیدی دیده­ شد. درعین­ حال، برآورد هزینه­ ها نشان­ دهنده کاهش هزینه مواد اولیه و درنتیجه کاهش کلی هزینه­ های تولید با جایگزینی آرد ذرت سخت بود. از نتایج چنین استنباط ­شد که از آرد سخت می­توان درهمه سطوح استفاده­ نمود، اما بهترین تیمار، 50٪ سطح جایگزینی یا کمی بیشتر در تولید بود که بر خواص شربت گلوکزی تأثیر خوبی به­ همراه ­داشت و با نمونه کنترل شباهت بیشتری داشت. به­ نظرمی­رسد تمام موارد فوق همراه­با مقرون­ به­ صرفه­ بودن، این تیمار را به­ عنوان یک جایگزین مناسب قند در صنایع غذایی مفروض­ می­نماید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of Glucose Syrup through Enzymatic Hydrolysis of Flint and Floury Corn Flour Mixtures and Evaluating its Properties as Cost-Effective Syrup

نویسندگان English

Fereshteh Fatourehchi 1
Flora Farrokhi 2
Orang Eyvazzadeh 3
Ali Bahadori 4
Amin Sayed Yaghoubi 5
1 Zar Macaron University of Applied Sciences and Technology.
2 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Department of Food Science and Technology, Varamin Branch, Islamic Azad University.
4 R&D Department, Gandomkob Company.
5 R&D Department, Zar Macaron Company.
چکیده English

Corn starch derivatives, including glucose syrups, are nowadays widely used in food industry. Glucose syrup is used in food industry, not only due to its sweetening power and nutritional value, but also for its functional properties (moisture stabilization, softening ability, improving texture and preventing sucrose crystallization). Floury (soft) corn is usually used to produce glucose syrup, but the most imported corn in Iran is flint or hard corn which is all the year round available and consequently, using both corn flour types would be inevitable. Therefore, the purpose of this study was to investigate the effect of using flint (hard) and floury (soft) corn flour to produce glucose syrup. Four treatments including hard flour + soft flour in four ratios of 30% + 70%, 50% + 50%, 70% + 30% and 100% soft flour as control were prepared and the physicochemical and organoleptic properties of the produced syrups were evaluated. According to the obtained results, using flint corn flour affected physicochemical and organoleptic properties of the samples. Increasing the ratio of flint corn flour had significantly decreased DE (Dextrose Equivalent), soluble solids and pH of glucose syrups. Also induced the increasing of color parameters and sulfated ash values of the produced syrups. However, cost estimates indicated a reduction in the cost of raw materials and consequently general reduction in production costs by replacing hard corn flour. It can be concluded from the results that hard flour can be used on all surfaces, but the best treatment was 50% replacement level or a bit more, in the production which had a good effect on the properties of glucose syrup and showed more similarity with the control sample. All of these, along with being cost effective, appeared this treatment to have the potential of supposing as a sugar substitute in food industry.

کلیدواژه‌ها English

corn flour
enzymatic hydrolysis
Glucose syrup
Physicochemical properties
Dextrose Equivalent (DE)
[1]. Parker, K., Salas, M. & Nwosu, V. C. (2010). High fructose corn syrup: Production, uses and public health concerns. Biotechnology and Molecular Biology Review, 5, 71-78.
[2]. Shi, x. & Bemiller, J. N. (2002). Effects of Food gums on viscosities of starch suspensions during pasting. Carbo hydrate polymers, 50, 7-18.
[3]. Silva, R. N., Quintino, F. P., Monteiro, V. N. & Asquieri, E. R. (2010). Production of glucose and fructose syrups from cassava (Manihot esculenta Crantz) starch using enzymes produced by microorganisms isolated from Brazilian Cerrado soil. Ciência e Tecnologia de Alimento, 28-36.
[4]. Moeller, S. M., Fryhofer, A. J., Osbahr, C. B. & Robinowitz, E. (2009). Council on Science and Public Health and American Medical Association: Effects of high fructose syrup. Journal of the American College of Nutrition, 28(6), 619-626.
[5]. O'Brien-Nabors, L. (2016). Alternative sweeteners. Marcel Dekker, Inc., New York, 53-69.
[6]. Kim, Y., Yoo, SH., Park, K. H., Shim, J. H. & Lee, S. (2012). Functional characterization of native starches through thermal and rheological analysis. Journal of the Korean Society for Applied Biological Chemistry, 55, 413–416.
[7]. White, J. S. (2008). Straight talk about high-fructose corn syrup: what it is and what it ain't. The American journal of clinical nutritio, 88(6), 1716-1721.
[8]. Sun, Q., Xing, Y., Qiu, C. & Xiong, L. (2014). The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup. PloS one, 9(4), 58-62.
[9]. Gabarra, P. & Hartel, R. W. (1998). Corn syrup solids and their saccharide fractions affect crystallization of amorphous sucrose. Journal of Food Science, 63(3), 523-528.‏
[10]. Van Der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H. & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of α-amylase family. Journal of biotechnology, 94(2), 137-15.
[11]. Berski, W. & Ziobro, R. (2017). Pasting and gel characteristics of normal and waxy maize starch in glucose syrup solutions. Journal of Cereal Science, 79, 253-258.
[12]. Aiyer, P. V. (2005). Amylases and their applications. African Journal of Biotechnology, 4(13), 1525-1529.
[13]. Nater, U. M. & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system. Current state of research, Psychoneuroendocrinology, 34(4), 486– 96.
[14]. Khatoon, S., Sreerama, Y. N., Raghavendra, D., Bhattacharya, S. & Bhat, K. K. (2009). Properties of enzyme modified corn, rice and tapioca starches. Food research international, 42(10), 1426-1433.
[15]. Ramachandran, V., Pujari, N., Matey, T., Kulkarni, S. & Rice, A. (2013). Enzymatic hydrolysis for glucose-A Review. International Journal of Science, Engineering and Technology Research (IJSETR), 2(10), 1937-1942.
[16]. Yetti, M. (2007). Improvement of glucose production by raw Starch degrading enzyme utilizing acid-treated sago starch as substrate. ASEAN Food Journal, 14 (2), 83-90.
[17]. Zainab, A., Modu, S., Falmata, A. S. & Maisaratu, A. (2011). Laboratory scale production of glucose syrup by the enzymatic hydrolysis of starch made from maize, millet and sorghum. Biokemistri, 23(1), 1-8.
[18]. Zhang, H. & Xu, G. (2019). Physicochemical properties of vitreous and floury endosperm flours in maize. Food Science and Nutrition, 7(8): 2605–2612.
[19]. Rendo´n-Villalobos, R. J., Solorza-Feria, J. & Aguilar-Sandoval, A. (2011). Optimization of conditions for glucose syrup production from banana (Musa paradisiaca L.) pulp using response surface methodology. International Journal of Food Science and Technology, 46, 739-745.
[20]. Prat, H. F., Sistrunk, W. A. & Morris, J. R. (1986). Factors influencing the quality of Canned strawberry filling during storage. Journal of Food processing and preservation, 10, 215-226.
[21]. AOAC. (2000). The Association of Official Agricultural Chemists, seventeenth ed. Official Method of Analysis, Washington, DC, USA.
[22]. AOAC. (2002). Crude Fat or Ether Extract: Animal Feeds. In AOAC Official Methods of Analysis, 17th edition: Revision 1. Horwitz, W., Ed.: AOAC International: Arlington, VA. 920.39.
[23]. Pearson, D. (1993). Te´cnicas de laboratorio para el ana´lisis de alimentos. Zaragoza, Espan˜ a: Ed. Acribia, 75-83.
[24]. Jones, O., Andrew, E. D., McClements, D. (2010). Thermal analysis of β-lactoglobulin complexes with pectin or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 24, 239-248.
[25]. Jia, C., Kim, Y. S., Huang, W. & Huang, G. (2008). Sensory and instrumental assessment. Influence of almond flour‚ maltitol syrup‚ fat and gums. Food Reserches International, 41(9), 930-936.
[26]. Wetzel, C. R., Weese, J. O. & Bell, L. N. (1997). Sensory evaluation of no-sugar-added cakes containing encapsulated aspartame. Food Research International, 30, 395-399.
[27]. Hein, D. R. & Linebac, A. (2007). Critical examination of evidence relating high fructose corn syrup and weight gain. Critical Reviews in Food Science & Nutrition, 47(6), 561-582.
[28]. Anonymous. (2009). Iran Institute of Standards and Industrial Research. Liquid glucose - Properties and test methods. National Standard of Iran, No. 621, Third Edition.
[29]. Nguyen, Q. D., Rezessy-Szabó, J. M., Claeyssens, M., Stals, I. & Hoschke, Á. (2002). Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme and Microbial Technology, 31(3), 345-352.‏
[30]. Schiraldi, C., Martino, A., Costabile, T., Generoso, M., Marotta, M. & De Rosa, M. (2004). Glucose production from maltodextrins employing a thermophilic immobilized cell biocatalyst in a packed bed reactor. Enzyme and Microbial Technology, 34, 415–421.
[31]. Jakson, E. B. (2005). Sugar confectionary manufacture. Chapman and hall, 22, 280- 283.
[32]. Bogdanov, S. (2009). Authenticity of Honey and Other Bee Products: State of the Art. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 64, 78-86.
[33]. Ettalibi, M. & Baratti, J. C. (2011). Sucrose hydrolysis by thermo-stable immobilized inulinase from Aspergillus hawaii. Enzyme and Microbiology Technology, 37, 513-519.
[34]. Al-Farsi, M., Alasalvar, C., Al-Abid, M., Al-Shoaily, K., Al-Amry, M. & Al-Rawahy, F. (2007). Compositional characteristics of dates, syrups and their by-products. Food Chemistry, 104, 943–947.
[35]. Wardrip, E. K. (1971). High fruotose corn syrup. Food Technology, 25, 50-58.
[36]. Dworshak, D. (1980). Non-enzymatic browning and its effect on protein and nutrition. CRC Critical Review. Food Science Nutrition. 13, 1-8.
[37]. Forshee, R. A., Storey, D. B., Allison, W. H., Glinsmann, G. L., Hein, D. R. & Linebac, B. (2007). Production of glucose syrup by the hydrolysis of starch made from rotten potato. Critical Reviews in Food Science and Nutrition, 47(6), 561-582.