بررسی فرآیند خشک کردن همرفت برش های سیب: بررسی تغییرات دمایی نمونه با استفاده از ترموگرافی مادون قرمز

نویسندگان
1 استادیار علوم و صنایع غذاییگروه بهداشت عمومی، دانشکده بهداشتدانشگاه علوم پزشکی خراسان شمالی
2 دانشیار مهندسی بیوسیستم ها، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی و صنایع غذایی، دانشگاه آزاد آیت الله آملی
4 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
چکیده
یکی از جنبه های مهم فناوری خشک کردن مواد غذایی، بررسی تغییرات رطوبت و دما نمونه طی فرآیند خشک کردن می باشد. بررسی تغییرات دمایی نمونه غالبا با وسایلی نظیر ترموکوپل و دماسنج صورت میگیرد. در این پژوهش ترموگرافی مادون قرمز جهت بررسی تغییرات دمایی برش­های سیب طی فرآیند خشک کردن بکار گرفته شد. تغییرات دمای نمونه در طی فرآیند خشک کردن در دمای 60 و 80 درجه سانتی گراد با استفاده از ترموکوپل نوع T و ترموگرافی مادون قرمز اندازه گیری شد. هم چنین تغییرات محتوای رطوبت برش های سیب طی فرایند خشک کردن اندازه گیری و منحنی خشک کردن بررسی شد. نتایج حاصل از این بررسی نشان داد که ترموگرافی مادون قرمز ابزار مناسبی است که قادر است بصورت غیر مستقیم و بدون تماس با نمونه روند تغییرات دمایی نمونه را طی فرآیند خشک کردن بخوبی اندازه­گیری نماید. بررسی منحنی تغییرات محتوای رطوبت در دمای 60 و 80 درجه سانتی گراد نشان داد که با افزایش دمای خشک کردن سرعت انتقال جرم و حرارت افزایش، و مدت زمان فرایند خشک شدن کاهش به طور قابل توجّهی کاهش می یابد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation the convective drying of apple slices: Investigation of temperature changes by infrared thermography

نویسندگان English

atena Pasban 1
Hassan Sadrnia 2
seyed ahmad shahidi 3
Mohebbat Mohebbi 4
1 Assistant Professor of Food SciencesDepartment of Public Health, School of HealthNorth Khorasan University of Medical Sciences
2 Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
4 Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

One of the important aspects of food drying technology is studying the moisture and temperature changes during the drying process. The temperature changes of the sample are often evaluated by instruments such as thermocouples and thermometers. In this research, infrared thermography was implemented for evaluating the temperature changes during drying process. Experiments were performed for drying air temperature of 60 and 80 oC and temperature changes were measured with T-type thermocouples and infrared thermography. Also, moisture content of apple slice was measured during dying process. The result shows infrared thermography is a good instrument for recording the temperature changes without contact or destroying sample. evaluation drying curves shows, with increasing drying air temperature, heat and mass transfer process increase and drying times decreased consequently.

کلیدواژه‌ها English

infrared thermography
Temperature Changes
Drying process
Apple
[1] Mujumdar, A.S., 2006. Book Review: Handbook of Industrial Drying, third ed. CRC Press.
[2] Ng, E. Y.-K. (2009). A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences, 48, 849-859.
[3] Gowen, A., Tiwari, B., Cullen, P., McDonnell, K., O’Donnell, C., 2010. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 21 (4), 190–200.
[4] Nott, K. P., & Hall, L. D. 1999, Advances in temperature validation of foods. Trends in Food Science & Technology, 10, 366-374.
[5]Rahkonen, J., & Jokela, H. (2003). Infrared radiometry for measuring plant leaf temperature during thermal weed control treatment. Biosystems Engineering, 86(3), 257-266.
[6] Meola, C. and G. M. Carlomagno. 2004. Recent advances in the use of infrared thermography. Meas.Sci. Technol. 15, 27–58.
[7] Goedeken, D. L., Tong, C. H., & Lentz, R. R. (1991). Design and calibration of a continuous temperature measurement system in a microwave cavity by infrared imaging. Journal of Food Processing & Preservation, 15, 331-337.
[8] Manickavasagan, A., Jayas, D. S., & White, N. D. G. 2006, Nonuniformity of surface temperatures of grain after microwave treatment in an industrial microwave dryer. Drying Technology, 24(12), 1559–1567.
[9] Vadivambal, R., Jayas, D. S., Chelladurai, V., & White, N. D. G. 2007. Temperature distribution studies in microwave-heated grains using a thermal camera. ASABE Annual Meeting, Paper Number: RRV-07100, North Dakota, USA.
[10] Cuccurullo, G., Giordano, L., Albanese, D., Cinquanta, L., Di Matteo, M., 2012. Infrared thermography assisted control for apples microwave drying. J. Food Eng. 112 (4), 319–325.
[11] Traffano-Schiffo, M. V., M. Castro-Giráldez, P. J. Fito and N. Balaguer. 2014. Thermodynamic model of meat drying by infrarred thermography. J. Food Eng. 128: 103–110.
[12] Fito, P. J., Ortola´, M. D., De los Reyes, R., Fito, P., & De los Reyes, E. (2004). Control of citrus surface drying by image analysis of infrared thermography. Journal of Food Engineering, 61(3), 287-290.
[13] Anonymous (2013) FAOSTAT. Food and Agricultural Organization.
[14] Karimi, S., Khoshtaghaza, M. H.(2014). Drying of apple slice by halogen dryer. Journal of food science and technology, 44(11), 167- 175.
[15] AOAC, 1990. Official methods of analysis, 15th ed., Association of Official Analytical Chemists, Arlington, VA.
[16] Bennett, G. A., & Briles, S. D. 1989, Calibration procedure developed for IR surface-temperature measurements. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 12(4), 690-695.
[17] Doosti Irani, O. 2015. Development of a computer vision system for a mechanical damage of apples at harvest both visible and near-infrared spectrum. MSc Thesis. Ferdowsi University of Mashhad. Faculty of Agriculture.
[18] Villa-Corrales, L., Flores-Prieto, J.J., Xaman-Villasenor, J.P., Garcia-Hernandez, E., 2010. Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. J. Food Eng. 98 (2), 198–206.
[19] Lemus-Mondaca, R.A., Zambra, C.E., Vega-Galvez, A., Moraga, N.O., 2013. Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices. J. Food Eng. 116 (1), 109–117.
[20] Tzempelikos, D.A., Mitrakos, D., Vouros, A.P., Bardakas, A.V., Filios, A.E., Margaris, D.P., 2015. Numerical modelling of heat and mass transfer during convective drying of cylindrical quince slices. J. Food Eng. 156, 10–21.
[21] Pasban, A., Sadrnia, H., Mohebbi, M., Shahidi, S. A. (2017). Spectral method for simulating 3D heat and mass transfer during drying of apple slices. Journal of Food Engineering (212) 201-212.
[22] Tzempelikos, D.A., Mitrakos, D., Vouros, A.P., Bardakas, A.V., Filios, A.E., Margaris, D.P., 2015. 596 Numerical modelling of heat and mass transfer during convective drying of cylindrical quince slices. 597 J. Food Eng. 156, 10–21.