[1] Sani, I. K., Pirsa, S., & Tağı, Ş. (2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 79, 106004.
[2] Asdagh, A., Karimi Sani, I., Pirsa, S., Amiri, S., Shariatifar, N., Eghbaljoo–Gharehgheshlaghi, H., ... & Taniyan, A. (2021). Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment, 29(1), 335-349.
[3] Karimi Sani, I., Alizadeh, M., Pirsa, S., & Moghaddas Kia, E. (2019). Impact of operating parameters and wall material components on the characteristics of microencapsulated Melissa officinalis essential oil. Flavour and Fragrance Journal, 34(2), 104-112.
[4] Pirsa, S., Karimi Sani, I., Pirouzifard, M. K., & Erfani, A. (2020). Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A, 37(4), 634-648.
[5] Dahiya, P. K., Linnemann, A. R., Van Boekel, M. A. J. S., Khetarpaul, N., Grewal, R. B., & Nout, M. J. R. (2015). Mung bean: Technological and nutritional potential. Critical reviews in food science and nutrition, 55(5), 670-688.
[6] Khaket, T. P., Dhanda, S., Jodha, D., & Singh, J. (2015). Purification and biochemical characterization of dipeptidyl peptidase-II (DPP7) homologue from germinated Vigna radiata seeds. Bioorganic chemistry, 63, 132-141.
[7] Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., et al. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectinS. Shivangi et al. Downloaded from konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128–135
[8] Zhi, Z. J., Chen, J. L., Li, S., Wang, W. J., Huang, R., Liu, D. H., ... Ye, X. Q. (2017). Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process. Scientific Reports, 7.
[9] Dash, K. K., Ali, N. A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International journal of biological macromolecules, 139, 449-458.
[10] Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719.
[10] Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., ... & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131-140.
[11] Chen, C., Sun, Z., Li, Y., Yi, L., & Hu, H. (2017). RETRACTED ARTICLE: Self-assembly of N doped 3D porous carbon frameworks from carbon quantum dots and its application for oxygen reduction reaction. Journal of Materials Science: Materials in Electronics, 28(17), 12660-12669.
[12] Rasul, N. H., Asdagh, A., Pirsa, S., Ghazanfarirad, N., & Sani, I. K. (2022). Development of antimicrobial/antioxidant nanocomposite film based on fish skin gelatin and chickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life. Materials Research Express, 9(2), 025306.
[13] Sani, I. K., Marand, S. A., Alizadeh, M., Amiri, S., & Asdagh, A. (2021). Thermal, mechanical, microstructural and inhibitory characteristics of sodium caseinate based bioactive films reinforced by ZnONPs/encapsulated Melissa officinalis essential oil. Journal of Inorganic and Organometallic Polymers and Materials, 31(1), 261-271.
[14] Kaya, M., Khadem, S., Selim Cakmak, Y., Mujtaba, M., Ilk, S., Akyuz, L., Salaberria, M., Labidi, J., Hamasaeed Abdulqadir, A., & Deligoz, ¨ E. (2018). Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Advances, 8(8), 3941–3950.
[15] Pirsa, S., Karimi Sani, I., & Khodayvandi, S. (2018b). Design and fabrication of starch‐nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polymers for Advanced Technologies, 29(11), 2750-2758.
[16] Zhao, X., Xing, T., Xu, X., & Zhou, G. (2020). Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food chemistry, 319, 126574.
[17] Lu, L., Dai, G., Yan, L., Wang, L., Wang, L., Wang, Z., & Wei, K. (2020). In-situ low-temperature sol-gel growth of nano-cerium oxide ternary composite films for ultraviolet blocking. Optical Materials, 101, 109724.
[18] Kamath, R., Basak, S., & Gokhale, J. (2021). Recent trends in the development of healthy and functional cheese analogues-a review. LWT, 112991.
[19] Bulat, T., & Topcu, A. (2019). The effect of oxidation-reduction potential on the characteristics of UF white cheese produced using single strains of Lactococcus lactis. LWT, 109, 296-304.
[20] Mahmoodi, Z., Zendeboodi, F., Mortazavian, A. M., Farhoodi, M., Mofid, V., Mohammadi Moghaddam, T., & Mehraban Sang Atash, M. (2022). Effect of adding salty‐taste enhancers on physicochemical and microstructural characteristics of reduced‐NaCl UF cheese using mixture design methodology. International Journal of Dairy Technology, 75(1), 214-238.
[21] Lee, N. K., Jeewanthi, R. K. C., Park, E. H., & Paik, H. D. (2016). Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. Journal of dairy science, 99(1), 83-88.
[22] Pirsa, S., Asadzadeh, F., & Karimi Sani, I. (2020). Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from Lake Urmia sediments. Journal of Inorganic and Organometallic Polymers and Materials, 30(8), 3188-3198.
[23] Pirsa, S., Sani, I. K., & Mirtalebi, S. S. (2022). Nano-biocomposite based color sensors: investigation of structure, function, and applications in intelligent food packaging. Food Packaging and Shelf Life, 31, 100789.
[24] Moghadam, M., Salami, M., Mohammadian, M., Khodadadi, M., & Emam-Djomeh, Z. (2020). Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 104, 105735.
[25] Abdelmontaleb, H. S., Othman, F. A., Degheidi, M. A., & Abbas, K. A. (2021). The influence of quinoa flour addition on the physicochemical, antioxidant activity, textural, and sensory characteristics of UF‐soft cheese during refrigerated storage. Journal of Food Processing and Preservation, e15494.
[26] Karimi Sani, I., Alizadeh Khaledabad, M., Pirsa, S., & Moghaddas Kia, E. (2020). Physico‐chemical, organoleptic, antioxidative and release characteristics of flavoured yoghurt enriched with microencapsulated Melissa officinalis essential oil. International Journal of Dairy Technology, 73(3), 542-551.
[27] Lee, N. K., Jeewanthi, R. K. C., Park, E. H., & Paik, H. D. (2016). Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. Journal of dairy science, 99(1), 83-88.
[28] Momeni Sarvestani, M., & Lashkari, H. (2020). Effect of black cumin essential oil on physicochemical, microbial and sensorial characteristics of ultrafilterated Feta cheese. Iranian Journal Food Science and Technology Research, 16(4), 409-421.
[29] Shivangi, S., Dorairaj, D., Negi, P. S., & Shetty, N. P. (2021). Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids, 121, 107046.
[30] Karami, M., M.R. Ehsani, S.M. Mousavi, K. Rezaei, and M. Safari. (2008). Microstructural changes in fat during the ripening of Iranian ultrafiltered Feta cheese. Journal of dairy Science. 91: 4147–4154.
[31] Motelica, L., Ficai, D., Oprea, O. C., Ficai, A., Ene, V. L., Vasile, B. S., ... & Holban, A. M. (2021). Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials, 11(9), 2377.
[32] Abdelmontaleb, H. S., Othman, F. A., Degheidi, M. A., & Abbas, K. A. (2021). The influence of quinoa flour addition on the physicochemical, antioxidant activity, textural, and sensory characteristics of UF‐soft cheese during refrigerated storage. Journal of Food Processing and Preservation, 45(5), e15494.
[33] Nottagh, S., Hesari, J., Peighambardoust, S. H., Rezaei-Mokarram, R., & Jafarizadeh-Malmiri, H. (2020). Effectiveness of edible coating based on chitosan and Natamycin on biological, physico-chemical and organoleptic attributes of Iranian ultra-filtrated cheese. Biologia, 75(4), 605-611.
[34] Yangilar, F. (2017). Effects of natamycin edible films fortified with essential oils on the safety and quality parameters of Kashar cheese. Journal of Food Safety, 37(2), e12306.
[35] Ríos-de-Benito, L. F., Escamilla-García, M., García-Almendárez, B., Amaro-Reyes, A., Di Pierro, P., & Regalado-González, C. (2021). Design of an Active Edible Coating Based on Sodium Caseinate, Chitosan and Oregano Essential Oil Reinforced with Silica Particles and Its Application on Panela Cheese. Coatings, 11(10), 1212.
[36] Berti, S., Resa, C. P. O., Basanta, F., Gerschenson, L. N., & Jagus, R. J. (2019). Edible coatings on Gouda cheese as a barrier against external contamination during ripening. Food Bioscience, 31, 100447.
[37] Al-Moghazy, M., El-sayed, H. S., Salama, H. H., & Nada, A. A. (2021). Edible packaging coating of encapsulated thyme essential oil in liposomal chitosan emulsions to improve the shelf life of Karish cheese. Food Bioscience, 43, 101230.
[38] Soleimani-Rambod, A., Zomorodi, S., Naghizadeh Raeisi, S., Khosrowshahi Asl, A., & Shahidi, S. A. (2018). The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings, 8(2), 80.
[39] Cooke, D. R., Khosrowshahi, A., & McSweeney, P. L. (2013). Effect of gum tragacanth on the rheological and functional properties of full-fat and half-fat Cheddar cheese. Dairy Science & Technology, 93(1), 45-62.
[40] El-Sisi, A. S., Gapr, A. M., & Kamaly, K. M. (2015). Use of chitosan as an edible coating in RAS cheese. Biolife, 3(2), 564-570.
[41] Özer, B., Hayaloglu, A. A., Yaman, H., Gürsoy, A., & Şener, L. (2013). Simultaneous use of transglutaminase and rennet in white-brined cheese production. International dairy journal, 33(2), 129-134.
[42] Pourmolaie, H., Khosrowshahi Asl, A., Ahmadi, M., Zomorodi, S., & Naghizadeh Raeisi, S. (2018). The effect of Guar and Tragacanth gums as edible coatings in Cheddar cheese during ripening. Journal of Food Safety, 38(6), e12529.
[43] Wagh, Y. R., Pushpadass, H. A., Emerald, F., & Nath, B. S. (2014). Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. Journal of food science and technology, 51(12), 3767-3775.
[44] Shin, Y. J., Song, H. Y., Seo, Y. B., & Song, K. B. (2012). Preparation of red algae film containing grapefruit seed extract and application for the packaging of cheese and bacon. Food Science and Biotechnology, 21(1), 225-231.