ریزپوشانی عصاره دانه چیا (Saliva hispanica L.) با نانولیپوزوم و صمغ دانه ریحان و بررسی خصوصیات فیزیکوشیمیایی و رهایش آن در شرایط شبیه‌سازی شده گوارشی

نویسندگان
1 دانشجوی دکتری علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد آیت الله آملی، آمل.
2 استاد تمام علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری ( ساری کیلومتر 7جاده دریا)
3 دکتری مهندسی علوم و صنایع غذایی-میکروبیولوژی موادغذایی، استادیار گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد آیت الله آملی، مل.
4 دکتری بیوتکنولوژی موادغذایی، استادیار گروه زیست فناوری میکروبی، دانشگاه تخصصی فناوریهای نوین آمل ، آمل.
چکیده
: دانه چیا به عنوان منبع غنی از ترکیبات زیست فعال و عملگرا مورد توجه می باشد.با توجه به اینکه ترکیبات زیست فعال در برابر عوامل محیطی ناپایدار هستند پایداری این ترکیبات حائز اهمیت بوده و درون پوشانی روشی مفید برای افزایش پایداری این ترکیبات می باشد.در این تحقیق نانو کپسول عصاره دانه چیا با نانو لیپوزوم و صمغ دانه ریحان تولید شد و خصوصیات فیزیکوشیمیایی و رهایش آن بررسی گردید. ابتدا نانو لیپوزوم‌ها با استفاده از لسیتین (درصد ثابت) و غلظت‌های مختلف عصاره دانه چیا تهیه شده و سپس با سه سطح صمغ دانه ریحان پوشش‌دهی شدند. اندازه ذرات، شاخص پراکندگی ، کارآیی ریزپوشانی و پتانسیل زتای نانولیپوزوم‌ها و نانوکپسول‌های تولیدی بررسی شده و سپس ریزساختار، طیف FTIR نمونه برتر و همچنین رهایش عصاره دانه چیا از نانوکپسول‌ تحت شرایط شبیه‌سازی شده معده و روده مورد بررسی قرار گرفت. کمترین میانگین اندازه ذرات (23/59 نانومتر)، شاخص PDI پایین (328/0) و راندمان کپسوله‌سازی بالا (06/80 درصد) در نانوکپسول‌های حاوی 5/0 درصد عصاره دانه چیای پوشش داده شده با 1 درصد صمغ دانه ریحان (L0.5BSG1) مشاهده شد. از آنجایی که پتانسیل زتای نانوذرات تولیدی در این تحقیق بالاتر از 30 ± میلی‌ولت بود، بنابراین از پایداری خوبی نیز برخوردار بودند. بر اساس تصاویر TEM، نانوکپسول‌های L0.5BSG1 شکل کروی و نامنظم داشته و تمایل کمی به تجمع نشان دادند. نتایج طیف‌سنجی FTIR نشان‌دهنده برهمکنش فیزیکی بین اجزای نانوکپسول بود و همچنین وجود ترکیبات فنلی در نانوکپسول‌ها را تایید کرد. از لحاظ میزان رهایش ترکیبات فنلی در شرایط شبیه‌سازی شده معده و روده، نانوکپسول‌های تولیدی نسبت به عصاره دانه چیای آزاد، دارای سرعت رهایش آهسته‌تری بودند و رهایش عصاره در شرایط معده سریع‌تر از شرایط روده صورت گرفت. در نهایت، نتایج این مطالعه نشان داد که نانوکپسول‌های (L0.5BSG1)احتمالاً می‌توانند با موفقیت در صنایع دارویی و غذایی مورد استفاده قرار گیرند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Encapsulation of chia (Saliva hispanica L.) seeds extract with nano-liposomes and basil seed gum and investigation of physicochemical characteristics and its release in simulated gastrointestinal conditions

نویسندگان English

Farinaz Hossein 1
Ali Motamedzadegan 2
Shahram Naghizadeh 3
Somayeh Rahaiee 4
2 Department Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran,POBOX 578
چکیده English

Chia seeds are considered as a rich source of bioactive and functional compounds. Due to the fact that bioactive compounds are unstable against environmental factors The stability of these compounds was important And encapsulation is a useful way to increase the stability of these compounds. In this study, nano-capsules of chia seed extract (CSE) with nano liposomes and basil seed gum (BSG) were produced and its physicochemical properties and release were investigated. nano-liposomes were first prepared using lecithin and different concentrations of CSE and then coated with three levels of BSG. The physicochemical properties and the CSE release from nano-capsules were examined. The lowest mean particle size (59.23 nm), low PDI index (0.328) and high encapsulation efficiency (80.06%) were observed in the Nano-capsules containing 0.5% CSE coated with 1.0% BSG (L0.5BSG1). Since the zeta potential of nano-capsules produced in this study was higher than ± 30 mV, so they had high stability. Based on the TEM images the L0.5BSG1 nano-capsules had spherical and irregular shape and low tendency to accumulate. The FTIR analyses showed physical interaction between nano-capsule components and also confirmed the presence of phenolic compounds in the nano-capsules. In terms of release rate in the gastric and intestinal simulated conditions, the CSE-loaded nano-capsules had a controlled release relative to free CSE. Finally, the results of this study demonstrated that L0.5BSG1 nano-capsules could possibly be used successfully in the pharmaceutical and food industries.

کلیدواژه‌ها English

Encapsulation
Chia seed extract
Nano-liposome
Basil seed gum
Release
[1] Kuznetcova, D. V., Linder, M., Jeandel, C., Paris, C., Desor, F., Baranenko, D. A., . . . Yen, F. T. (2020). Nanoliposomes and nanoemulsions based on chia seed lipids: Preparation and characterization. International Journal of Molecular Sciences, 21(23), 9079
[2] Hawaldar, A. S., & Ballal, S. (2021). Review on Antioxidant and Hemagglutination Properties of Chia and Basil Seeds. Journal of Pharmaceutical Research International, 44-52
[3] Knez Hrnčič, M., Ivanovski, M., Cör, D., & Knez, Ž. (2020). Chia Seeds (Salvia hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules, 25(1), 11.
[4] Shaygannia, S., Eshaghi, M. R., Fazel, M., & Hashemiravan, M. (2021a). The Effect of Microencapsulation of Phenolic Compounds from Lemon Waste by Persian and Basil Seed Gums on the Chemical and Microbiological Properties of Mayonnaise. Preventive Nutrition and Food Science, 26(1), 82.
[5] Timilsena, Y. P., Haque, M. A., & Adhikari, B. (2020). Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food and Nutrition Sciences, 11(06), 481.
[6] Estakhr, P., Tavakoli, J., Beigmohammadi, F., Alaei, S., & Mousavi Khaneghah, A. (2020). Incorporation of the nanoencapsulated polyphenolic extract of Ferula persica into soybean oil: Assessment of oil oxidative stability. Food science & nutrition, 8(6), 2817-2826
[7] Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78, 34-60
[8] Labuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227-247.
[9] Ozkan, G., Kostka, T., Esatbeyoglu, T., & Capanoglu, E. (2020). Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules, 25(23), 5545.
[ 10] Isailović, B. D., Kostić, I. T., Zvonar, A., Đorđević, V. B., Gašperlin, M., Nedović, V. A., & Bugarski, B. M. (2013). Resveratrol loaded liposomes produced by different techniques. Innovative Food Science & Emerging Technologies, 19, 181-189
[11] Hosseini-Parvar, S. H., Matia-Merino, L., Goh, K. K. T., Razavi, S. M. A., & Mortazavi, S. A. (2010). Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: Effect of concentration and temperature. Journal of Food Engineering, 101(3), 236-243
[12] Maqsood, H., Uroos, M., Muazzam, R., Naz, S., & Muhammad, N. (2020). Extraction of basil seed mucilage using ionic liquid and preparation of AuNps/mucilage nanocomposite for catalytic degradation of dye. International Journal of Biological Macromolecules, 164, 1847-1857
[13] Kurd, F., Fathi, M., & Shekarchizadeh, H. (2019). Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: Characterization and release modeling. Food Bioscience, 32, 100475.
[14] de Campo, C., dos Santos, P. P., Costa, T. M. H., Paese, K., Guterres, S. S., Rios, A. d. O., & Flôres, S. H. (2017). Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation. Food Chemistry, 234, 1-9.
[15] Rodea-González, D. A., Cruz-Olivares, J., Román-Guerrero, A., Rodríguez-Huezo, M. E., Vernon-Carter, E. J., & Pérez-Alonso, C. (2012). Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of Food Engineering, 111(1), 102-109.
[16] Kwon, H. C., Bae, H., Seo, H. G., & Han, S. G. (2019). Short communication: Chia seed extract enhances physiochemical and antioxidant properties of yogurt. Journal of Dairy Science, 102(6), 4870-4876.
[17] Pinilla, C. M. B., & Brandelli, A. (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteriain milk. Innovative Food Science & Emerging Technologies, 36, 287-293.
[18] Shahavi, M. H., Hosseini, M., Jahanshahi, M., & Darzi, G. N. (2015). Optimization of encapsulated clove oil particle size with biodegradable shell using design expert methodology. Pakistan Journal of Biotechnology, 12(2), 149-160.
[19] Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386-1394
[20] Sotelo-Boyás, M., Correa-Pacheco, Z., Bautista-Baños, S., & Gómez y Gómez, Y. (2017). Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. International Journal of Biological Macromolecules, 103, 409-414.
[21] Dai, L., et al., Fabrication of zein and rhamnolipid complex nanoparticles to enhance thestability and in vitro release of curcumin. Food Hydrocolloids, 2018. 77: p. 617-628.
[22] Rahaiee, S., Hashemi, M., Shojaosadati, S. A., Moini, S., & Razavi, S. H. (2017). Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. International journal of biological macromolecules, 99, 401-408.
[23] Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13-27
[24] Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies, 19, 29-
[25] Zou, L. Q., Liu, W., Liu, W. L., Liang, R. H., Li, T., Liu, C. M., ... & Liu, Z. (2014). Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. Journal of Agricultural and Food Chemistry, 62(4), 934-941.
[26] Naghavi, S., Azadmard-Damirchi, S., Peighambardoust, S. H., & Sowti Khiabani, M. (2018). Evaluating the properties of nanoliposomes containing green tea extract produced by ethanol injection method. JFST No. 73, Vol.
[27] Rashidaie Abandansarie, S. S., Ariaii, P., & Charmchian Langerodi, M. (2019). Effects of encapsulated rosemary extract on oxidative and microbiological stability of beef meat during refrigerated storage. Food science & nutrition, 7(12), 3969-3978
[28] Komijani, M., Mohebbi, M., & Ghorani, B. (2020). Enhancement of Lycopene Bioaccessibility by Using Basil Seed Gum/PVA Nanofibers. Research and Innovation in Food Science and Technology.
[29] Razavizadeh, B. M., Kadkhodaee, R., & Zaferani, Z. (2015). Extraction and encapsulation of capsaicinoids of red pepper oleoresin.
[30] Nakayama, T., Hashimoto, T., Kajiya, K. and Kumazawa, S. 2000. Affinity of polyphenols for lipid bilayers. Biofactors, 13(1‐4): 147-151
[31] Morales-Olán, G., Luna-Suárez, S., Figueroa-Cárdenas, J. D. D., Corea, M., & Rojas-López, M. (2021). Synthesis and Characterization of Chitosan Particles Loaded with Antioxidants Extracted from Chia (Salvia hispanica L.) Seeds. International Journal of Analytical Chemistry, 2021
[32] Fırtın, B., Yenipazar, H., Saygün, A., & Şahin-Yeşilçubuk, N. (2020). Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. LWT, 134, 109947
[33] Delfanian, M., Razavi, S. M. A., Haddad Khodaparast, M. H., Esmaeilzadeh Kenari, R., & Golmohammadzadeh, S. (2018). Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Research International, 108, 136-143
[34] Sharma, A., & Sharma, U.S. (1997). Liposomes in drug delivery: progress and limitations. International Journal of Pharmacology, 154(2): 123-40.
[35] Muhammad, D. R. A., Doost, A. S., Gupta, V., bin Sintang, M. D., Van de Walle, D., Van der Meeren, P., & Dewettinck, K. (2020). Stability and functionality of xanthan gum–shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocolloids, 100, 105377
[36] Fırtın, B., Yenipazar, H., Saygün, A., & Şahin-Yeşilçubuk, N. (2020). Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. LWT, 134, 109947
[37] Pasrija, D., Ezhilarasi, P. N., Indrani, D., & Anandharamakrishnan, C. (2015). Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT - Food Science and Technology, 64(1), 289-296. [38] Pereira Souza, A. C., Deyse Gurak, P., & Damasceno Ferreira Marczak, L. (2017). Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food and Bioproducts Processing, 102, 186-194
[39] Gahruie, H. H., Niakousari, M., Parastouei, K., Mokhtarian, M., Eş, I., & Mousavi Khaneghah, A. (2020). Co‐encapsulation of vitamin D3 and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types. Journal of Food Processing and Preservation, 44(8), e14629. doi:
[40] Kuznetcova, D. V., Linder, M., Jeandel, C., Paris, C., Desor, F., Baranenko, D. A., . . . Yen, F. T. (2020). Nanoliposomes and nanoemulsions based on chia seed lipids: Preparation and characterization. International Journal of Molecular Sciences, 21(23), 9079
[41] de Campo, C., dos Santos, P. P., Costa, T. M. H., Paese, K., Guterres, S. S., Rios, A. d. O., & Flôres, S. H. (2017). Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation. Food Chemistry, 234, 1-9.
[42] Cobaleda-Velasco, M., Almaraz-Abarca, N., Alanis-Bañuelos, R. E., Uribe-Soto, J. N., González-Valdez, L. S., Muñoz-Hernández, G., . . . Rojas-López, M. (2018). Rapid Determination of Phenolics, Flavonoids, and Antioxidant Properties of Physalis ixocarpa Brot. ex Hornem. and Physalis angulata L. by Infrared Spectroscopy and Partial Least Squares. Analytical Letters, 51(4), 523-536
[43] Akcicek, A., Bozkurt, F., Akgül, C., & Karasu, S. (2021). Encapsulation of Olive Pomace Extract in Rocket Seed Gum and Chia Seed Gum Nanoparticles: Characterization, Antioxidant Activity and Oxidative Stability. Foods, 10(8), 1735
[44] Kurd, F., Fathi, M., & Shekarchizadeh, H. (2019). Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: Characterization and release modeling. Food Bioscience, 32, 100475.
[45] Fahami, A., & Fathi, M. (2018). Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocolloids, 81, 31-38
[46] Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2017). Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocolloids, 66, 71-81.
[47] Roshanpour, S., Tavakoli, J., Beigmohammadi, F., & Alaei, S. (2021). Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. Journal of Food Measurement and Characterization, 15(1), 23-32