اصلاح بارگاه سنتی خشک کردن انگور با استفاده از صفحات گرمایشی هوشمند و ارزیابی مصرف انرژی آن

نویسندگان
بخش تحقیقات فنی و مهندسی مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران.
چکیده
کشمش یکی از محصولات ارزآور در بخش کشاورزی است اما چالش‌های متعددی در کیفیت کشمش و رقابت آن در بازارهای خارجی وجود دارد. نوع بارگاه و شرایط محیطی خشک کردن می‌تواند در کیفیت کشمش تاثیر زیادی داشته باشد. در این تحقیق هدف اصلاح بارگاه سنتی خشک کردن انگور، با استفاده از صفحات گرمایشی هوشمند است. در این بررسی انگور رقم بی‌دانه در دو زمان مختلف برداشت شد و به دو صورت طبیعی (بدون پیش تیمار) و تیمار شده با محلول تیزاب آماده شد و در بارگاه معمولی با کف بتونی و بارگاه بتونی حاوی صفحات گرمایش هوشمند خشک گردید. نتایج نشان داد که زمان لازم برای خشک کردن انگورهای بدون تیمار 36/2 برابر زمان لازم برای خشک کردن انگورهای تیمار شده با تیزاب و زمان خشک کردن در آفتاب حدود 75/4 برابر زمان لازم در بارگاه با صفحات گرمایش هوشمند بود. همچنین در روش آفتابی بار میکروبی کلی، کلی‌فرم، کپک‌ و مخمر بیشتر اما تعداد باکتری‌های اسید لاکتیک کمتر از روش بارگاه با صفحات گرمایش هوشمند بود در حالی که در کشمش‌های تیمار شده با قلیا بار میکروبی کلی، کلی فرم و کپک‌ کمتر اما تعداد باکتری‌های اسید لاکتیک و مخمرها بیشتر از کشمش‌های طبیعی بود (P<0.05). نتایج ارزیابی حسی نیز نشان داد که امتیاز رنگ نمونه‌های با پیش تیمار قلیایی به‌طور معنی‌داری بیشتر از نمونه‌های بدون پیش تیمار بود. مقدار انرژی مصرفی برای تهیه یک کیلوگرم کشمش تیزابی در اواخر شهریور و مهرماه به ترتیب 98/0 و 78/1 کیلووات ساعت و برای تهیه یک کیلوگرم کشمش طبیعی این مقدار به ترتیب 63/1 و 5/5 کیلووات ساعت برآورد شد. با توجه به نتایج به دست آمده از این بررسی، می‌توان با برداشت به موقع انگور جهت تهیه کشمش و استفاده از بارگاه‌های با صفحات گرمایش هوشمند می‌توان کشمشی با کیفیت بهداشتی بالا و با خواص حسی مطلوب تهیه نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modification of the traditional grape drying place using control heating plates and evaluate its energy consumption

نویسندگان English

Shahin Zomorodi
Farid Amirshaghaghi
Karim Gerami
.Department of Engineering Research, West Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran.
چکیده English

Raisin is one of the important export products in the agricultural sector, but there are several challenges in increasing the quality of raisins and their competition in foreign markets. The type of drying place and environmental conditions can have a great impact on the quality of raisins. In this study, the aim is to modify the traditional grape drying place, using intelligent heating plates. The seedless grape was harvested at two different times and prepared by two methods, natural (without pretreatment) and treated with alkaline solution and dried in traditional place with concrete floor and traditional place modified by control heating plates. The results showed that the drying time of non-treated raisins was 2.36 times of alkali-treated raisins and the drying time of traditional place was about 4.75 times of modified place. Also, the total count, coliform, molds and yeasts in the traditional drying place were higher, but the number of lactic acid bacteria was less than the modified method (P <0.05). In alkali-treated raisins, the total count, coliform and mold were lower, but the number of lactic acid bacteria and yeasts was higher than natural raisins (P <0.05). The results of sensory evaluation also showed that the color score of samples with alkali-treated raisins was significantly higher than other. The amount of energy consumed to prepare one kg of raisins in 21th September and 12th October was 0.98 and 1.78 kWh, respectively, and for natural raisins, this amount was 1.63 and 5.5 kWh, respectively. According to the results obtained in this study, it is possible to prepare raisins with high hygienic quality and desirable sensory properties by harvesting grapes in a timely and drying in the place with intelligent heating plates

کلیدواژه‌ها English

traditional grape drying place
control heating plates
raisins
Drying
energy consumption
[1] FAO. 2021. Food and Agriculture Organization. www.fao.org
[2] Najatiyan, M, A. 2019. New farms producing healthy raisins. Jihad Keshavarzi Institute of Higher Education. Tehran. (In Persian).
[3] Arvind, P., Siddharth, V., & Deepoo, M. 2021. Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. Food Frontiers. 2021: 1-16
[4] Wang, J., Mujumdar, A. S., Mu, W., Feng, J., Zhang, X., Zhang, Q., Fang, X., & Xiao, Z. G. H. 2016. Grape drying: current status and future trends. In: Morata, A., Loira, I., editors. Grape and Wine Biotechnology Intech Open; https://doi.org/10.5772/64662.
[5] Anonymous. 2020. Catalog of agricultural products-livestock. Altan Azmoon Industry Complex. www.topsunheating.com
[6] Fink, D. G. & Beaty, H. W. 1978. Standard handbook for electrical engineers, Eleventh Edition, McGraw-Hill, New York. pp. 21-144 to 21-188.
[7] Khiari, R., Zemni, H. & Mihoubi, D. 2018. Raisin processing: physicochemical, nutritional and microbiological quality characteristics as affected by drying process. Food Reviews International. 2018: 1-53.
[8] Mahmutoğlu, T., Emír, F. & Saygi, Y.B. 1996. Sun/solar drying of differently treated grapes and storage stability of dried grapes. Journal Food Engineering. 29: 289–300.
[9] Langová, R., Juzl, M., Cwiková, O. & Kos, I. 2020. Effect of different method of drying of five varieties grapes (vitis vinifera L.) on the bunch stem on physicochemical, microbiological, and sensory quality. Foods. 9: 1183.
[10] Mandal, G. & Thakur, A. K. 2015. Preparation of raisin from grapes varieties grown in Punjab with different processing treatments. International Journal of Bio-Resource, Environment and Agriculture Science. 1(1): 25-31.
[11] Zomorodi, Sh., Dilmaghanian, F., & Shavakhi, F. 2021. Application of essential oils of dill (Anethum graveolens L) for improvement of quality and shelf-life of natural raisins. Iranian Journal of Food Science and Technology. 115: 23-35. (In Persian)
[12] Najatiyan, M, A. 2005. Increasing the efficiency (reducing waste) of raisin production. The Second National Conference on Agricultural Waste. Tarbiat Modares University pp. 506-516. (In Persian)
[13] Arzani, K., & Sharafati, A. H. 2000. Study of grape harvest date of Peykani cultivar and alkaline solutions post-harvest on quantity and quality of Kashmar green raisins. the first national grape conference. 28-26 September, Qazvin. pp. 1. (In Persian)
[14] Pileh, F., Farrokhzad, A., Ismaili, M. & Dolati Baneh, H. 2012. The effect of harvest time and shelf life on some biochemical properties of berry of white seedless sultana cultivar. Journal of Food research. 25: 564-576. (In Persian)
[16] Lokhande S. M. & Sahoo A. K. 2016. Effect of drying on grape raisin quality parameters. International Journal of Innovative Research in Science and Engineering. 2: 86-95.
[17] Masbahi, Gh. R., Zomorrodian, A., Dadashzadeh, M. & Farahnaki, A. 2010. A Comparative Study of Raisin Production by Solar Dryer and Other Drying Methods. Iranian Food Science and Technology Research. 2: 61- 74. (In Persian).
[18] Sardar, N. R., Tiwari Manish, G.P., Tagalpallewar, J.P., & Rathod Prabhakar, B. 2019. Effect of various pretreatments on raisin making from grapes (Vitis vinifera L.). International Journal Current. Microbiology Applied Science. 8(5): 575-587.
[19] Karimi, R. & Mirzaei, F. 2019. The effect of three drying methods on biophysical and biochemical properties of raisins. Iranian Horticultural Sciences. 49: 475-491.
[20] Anonymous. 1991. Specification and methods of test for raisin. Institute of Standards and Industrial Research of Iran. No. 17. (In Parisian).
[21] Sharma, S, Sharma, A. K., Banerjee, K., Barman, K. & Nath, V. 2018. Evaluation of physico-chemical, nutritional quality and safety of imported raisin samples available in Indian market. Journal of Pharmacognosy and Photochemistry. 7: 1246-1251.
[22] AlAskari, G., Kahouadji, A., Khedid, K., harof R. C. & Mennane, Z. 2012. Physicochemical and microbiological study of “raisin”, local and imported (Morocco). Middle-East Journal of Scientific Research. 11: 01-06.
[23] Koundouras, S., Marinos V., Gkoulioti, A., Kotseridis, Y. & van Leeuwen, C. 2006. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effect on wine phenolic and aroma components. Journal of Agricultural and Food Chemistry. 54: 5077–5086.
[24] Magnoli, C., A. Astroeca, L. Ponsone, M. Combina, G. Palacio, C.A.R. Rose A.M. & Dalcero, M. 2004. Survey of mycoflora and ochratoxin A in dried vine fruit from Argentina markets. Letters in Applied Microbiology. 39: 326-331.
[25] Doymaz, I. 2006. Drying kinetics of black rapes treated with different solutions. Journal Food Engineering. 76: 212-217.
[26] Witthuhn, R. C., Engelbrecht, S., Joubert, E. & Britz, T. J. 2005. Microbial content of commercial South African high‐moisture dried fruits. Journal Applied Microbiology. 98: 722-726.
[27] Omolola, A. O., Jideani, A. I. O. & Kapila, P. F. 2017. Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition. 57: 95–108.
[28] Zemni, H., Sghaier, A., Khiari, R., Chebil, S., Ben Ismail, H., Nefzaoui, R., Hamdi, Z. & Lasram, S. 2017. Physicochemical, phytochemical and mycological characteristics of Italia Muscat raisins obtained using different pre-treatment and drying techniques. Food Bioprocess Technology. 10: 479–490.
[29] Guiné, R. P. F., Almeida, I. C., Correia, A. C. & Gonçalves, F. J. 2015. Evaluation of the physical, chemical and sensory properties of raisins produced from grapes of the cultivar crimson. Journal of Food Measurement and Characterization. 9: 337–346.
[30] Billiris, M. A., Siebenmorgen, T. J. & Mauromoustakos, A. 2011. Estimating the theoretical energy required to dry rice. Journal of Food Engineering, Elsevier, 107(2): 253-261.
[31] Raghavan, G. S. V., Rennie, T. J., Sunjka, P. S., Orsat, V., Phaphuangwittayakul, W. & Terdtoon, P. 2005. Overview of new techniques for drying biological materials with emphasis on energy aspects. Brazilian Journal of Chemical Engineering. 22(2): 195-201.
[32] Nwakuba, N. R, Asoegwu, S.N. & Nwaigwe, K.N. 2016. Energy consumption of agricultural dryers: an overview. Agricultural Engineering International: CIGR Journal. 18: 119-132.
[33] Yahya, M., Ruslan, M. H., Othman, M. Y., Yatim, B., Sulaiman, M. Y., Mat, S., Lim, C. H., Alghoul, M. A., Zaharim, A. & Sopian, K. 2011. Evaluation of energy requirement for drying of green tea using a solar assisted drying system (Vgroove solar collector); Proceedings of the 3rd WSEAS International Conference on Renewable Energy Sources. Pp. 298-303.