ارزیابی نوع و ترکیب مواد پوشش دهنده در پایداری رنگ‌دانه فیکوسیانین به روش خشک کن پاششی

نویسندگان
1 استادیار، گروه بیوتکنولوژی صنعتی میکروارگانیسم ها، پژوهشکده بیوتکنولوژی صنعتی. جهاد دانشگاهی خراسان رضوی
2 عضو گروه پژوهشی کیفیت و ایمنی مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی. جهاد دانشگاهی خراسان رضوی
3 بخش تحقیق و توسعه، شرکت تولیدی عالیس، مشهد، ایران
4 گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد، ایران
چکیده
فیکوسیانین رنگ­دانه استخراج شده جلبک اسپیرولینا پلاتنسیس است و در صنایع مختلفی از جمله صنایع غذایی می­تواند جایگزین مناسبی برای رنگ­های سنتزی باشد. هدف از این تحقیق ارزیابی نوع و ترکیب مواد پوشش دهنده در پایداری رنگ­دانه فیکوسیانین به روش خشک کن پاششی می باشد. محلول رنگ­دانه فیکوسیانین توسط اسید تانیک کوپیگمنت شد و با مالتودکسترین و صمغ عربی در نسبت­های (100:0، 75:25، 50:50، 25:75 و 0:100) صمغ عربی: مالتودکسترین و نسبت هسته به دیواره 10:1 پوشش دهی شدند. جهت خشک کردن از خشک کن پاششی استفاده شد. پایداری محلول رنگ­دانه پوشش دار شده خشک شده به مدت 14 روز انجام شد. نتایج نشان داد که پوشش دهی رنگ­دانه در پایداری آن تاثیر معنی داری دارد به طوری که آنالیز واریانس مقایسه میانگین تیمار حاوی 100 درصد و 75 درصد مالتودکسترین در پوشش دارای کمترین میزان افت جذب رنگ­دانه با مقادیر 3/12 و 5/14 درصد به ترتیب هستند. بررسی تصاویر میکروسکوپ الکترونی نشان داد که ریزکپسول­های حاوی مقادیر بالاتر مالتودکسترین، کروی­تر با سطح صاف­تر و دارای چین و چروک­های کمتری نسبت به ریزکپسول­های تهیه شده با صمغ عربی هستند. همچنین نتایج اندازه ذرات نشان داد که نمونه های پودر حاوی مالتودکسترین در مقایسه با نمونه های دارای صمغ عربی از اندازه درشت تری برخوردار هستند که به ترتیب 5/50 و 3/41 نانومتر می­باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the type and composition of coatings in the stability of phycocyanin pigment by spray drying method

نویسندگان English

reza karazhyan 1
reza ameri 1
reza Gord Noshahri 1
parirokh lavaee 1
Ahmad Ehtiati 2
farzad sadeghi 3
seyyed hosein razavizadeghan 4
1 Assistant Professor, Department of industrial biotechnology on microorganisms, Iranian Academic Center for Education Culture and Research (ACECR), Mashhad, Iran
2 Researcher/ Iranian Academic Center for Education Culture and Research (ACECR) Khorasan Razavi
3 Research and Development Division, Alis Allied Manufacturing Corporation, Mashhad, Iran
4 Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

Phycocyanin is a pigment extracted from Spirulina platensis and can be a good alternative to synthetic dyes in various industries, including the food industry.The aim of this study was to evaluate the type and composition of coatings in the stability of phycocyanin pigment by spray dryer. Phycocyanin pigment solution was copigmented with tannic acid and mixed with maltodextrin and gum arabic in ratios (100: 0, 75:25, 50:50, 25:75 and 0: 100) gum arabic: maltodextrin and core to wall ratio 10: 1 were coated. The results showed that pigment coating has a significant effect on its stability, so that the analysis of variance comparing the average of the treatment containing 100% and 75% maltodextrin in the coating with the lowest amount of pigment absorption with values of 12.3 and 14.5 respectively. Examination of the electron microscope showed that the microcapsules contained higher amounts of maltodextrin, sphericals with a smoother surface and less wrinkles than the microcapsules made with gum arabic. Also, the particle size results showed that the powder samples containing maltodextrin were larger than the samples with gum arabic, which were 50.5 and 41.3 nm, respectively.

کلیدواژه‌ها English

Phycocyanin
Coating
pigment stability
[1] Zhang, S., Zhang, Z., Dadmohammadi, Y., Li, Y., Jaiswal, A., Abbaspourrad, A. 2020. Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage, Journal of foodchem, doi: 10.1016, 128642.
[2] Hadiyanto, H., Christwardana, M., Sutanto, H., Suzery, M., Amelia, D., Febrina Aritonang, R. 2018. Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp, Journal of Food Bioscience, 22: 85–90. doi:10.1016/j.fbio.2018.01.007
[3] Rahman, D.Y., Sarian, F.D., Van Wijk, A., Martinez-Garcia, M., Van der Maarel, M. J. E. C. 2016. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant, Journal of Appl Phycol, 29: 1233–1239. doi: 10.1007/s10811-016-1007-0.
[4] Chaiklahan, R., Chirasuwan, N., Bunnag, B. 2012a. Stability of phycocyanin extracted from Spirulina sp: Influence of temperature, pH and preservatives, Journal of Process Biochemistry, 47: 659–664. doi:10.1016/j.procbio. 01.010
[5] Ansari, M and Hojjati MR. 2018. Optimization of extraction and microencapsulation of anthocyanin pigments extracted from red onion peel and red cabbage. Journal of food research, 28, 1. 73-91
[6] Martelli, G., Folli, C., Visai, L., Daglia, M., Ferrari, D. 2014. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications, Journal of Process Biochemistry, 49: 154–159. doi: 10.1016/j.procbio.2013.10.008.
[7] Ming, H, Gustavo, C., Luis, M. 2020.Black Bean Anthocyanin-Rich Extract from Supercritical and Pressurized Extraction Increased In Vitro Antidiabetic Potential, While Having Similar Storage Stability. Journal of Foods 9(5):655. doi: 10.3390/foods9050655.
[8] Farhadi Chitgar, M., Aalami, M., Kadkhodaee, R., Maghsoudlou, Y., Milani, E. 2018. Effect of thermosonication and thermal treatments on phytochemical stability of barberry juice copigmented with ferulic acid and licorice extract, Journal of Innovative Food Science & Emerging Technologies, 50: 102-111. doi:10.1016/j.ifset.2018.09.004.
[9] Heras-Roger, J., Alonso-Alonso, O., Gallo-Montesdeoca, A., Díaz-Romero, C., Darias-Martín, J. 2016. Influence of copigmentation and phenolic composition on wine color. Journal of Food Sci Technol, 53(6):2540-7. doi.:10.1007/s13197-016-2210-3.
[10] Kamali A, Sharayei P, Niazmand R, Eynafshar S. Effect of different concentration of maltodextrin and polyvinylpyrrolidone on stability of saffron’s effective compounds microencapsulated by spray drying. Quarterly journal of research and innovation in food science and technology. 2012, 1, 4, 241-254. doi.:10.22101/jrifst.2013.03.15.142
[11] Ghorani, B., Kadkhodaee, R., Alehosseini, A. 2017. The Effect of Biopolymer Type, Temperature and Relative Humidity on the Physicochemical Characteristics and Stability of Microencapsulated Bioactive Compounds of Saffron. Journal of F.S.T, 64: 14, 127-142.
[12] Akhavan Mahdavi, S., Jafari, S. M., Assadpoor, E., Dehnadaa, D. 2016. Microencapsulation optimization of natural anthocyanins withmaltodextrin, gum Arabic and gelatin, International Journal of Biological Macromolecules, 85: 379–385. doi: 10.1016/j.ijbiomac.2016.01.011.
[13] Purnamayati, L., Dewi, E., Kurniasih, R.A. 2018. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature. IOP Conf. Ser: Journal of Earth Environ Sci, 116: 012076. doi:10.1088/1755-1315/116/1/012076.
[14] Najaf Najafi, M., Mortazavi, A., Kadkhodaee, R., Tabatabaee, F. 2011. Influence of Hi-Cap 100 and Tween 80 Interaction on the Properties of Cardamom Oil–in-water Emulsion and its Microcapsules, Journal of Iranian Food Science and Technology Research, 6 (4) 254-262. doi: 10.22067/ifstrj.v6i4.9282.
[15] Hojjati M, Razavi H, Rezaei K, Gilani K. 2013. Effect of wall components on characteristics of natural canthaxanthin microencapsulated using spray-drying, Iranian Journal of Nutrition Sciences & Food Technology, 8(3), 45-54.
[16] Helgason, T., Bohn, H., Weiland, A., Sowa, C., Gottschalk, T. 2016. Stabilized phycocyanin for blue color. US20160324745A1.
[17] Vatankhah Lotfabadi, S., Mortazavi, A., Yeganehzad, S., Sadeghian, A. 2018. Evaluation of type and concentration of wall materials in D-Limonene microencapsulation to determination of optimum condition for flavored rock candy production, Journal of New Food Technologies, 5(2), 159-176. doi: 10.22104/JIFT.2017.512.
[18] Ghazali, E., Gharekhani, M., Hamishekar, H. 2019. Study physical and antioxidant properties of the microcapsules of Citrus urantium extract prepared by spray drying method. Journal of innovative food technologies, 6: 441-453. doi: 10.22104/jift.2018.2603.1614.
[19] Kamali, A., Sharayei, P., Niazmand, R., Eynafshar, S. 2012. Effect of different concentration of maltodextrin and polyvinylpyrrolidone on stability of saffron’s effective compounds microencapsulated by spray drying, Journal of Quarterly journal of research and innovation in food science and technology, 1(4), 241-254. doi.:10.22101/jrifst.2013.03.15.142.
[20] Santana, A., Cano-Higuita, D., De Oliveira, R., Telis, V. 2016. Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying, Journal of Food Chem, 212, 1-9.doi: 10.1016/j.foodchem.2016.05.148.
[21] Pang. S.F., Yusoff, M.M., Gimbun, J. 2014. Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts, Journal of Food Hydrocolloid, 37: 159-165. doi: 10.1016/j.foodhyd.2013.10.022.
[22] Torres, M., Santiago-Adame, R., Calderas, F., Gallegos-Infante, J.A., González-Laredo, R.F., Rocha-Guzmán, N.E., Nú˜nez-Ramíreze, D.M., Bernad-Bernada, M.J., Maneroba Facultad, O. 2016. Microencapsulation by spray drying of laurel infusions (Litsea glaucescens) with maltodextrin, Ind Crops Prod, 90: 1-8.
[23] Akbas, E., Kilercioglu, M., Onder, O., Koker, A., Soyler, B., Oztop, M. 2017. Wheatgrass juice to wheat grass powder: Encapsulation, physical and chemical characterization. Journal of Funct, 28:19-27.
[24] Tolun, A., Altintas, Z., Artik, N. 2016. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization, Journal of Biotechnol, 239, 23-33.
[25] Shabanpour, B., Mehrad, B., Pourashouri, P., Jafari, S. M. 2018. The Effect of Wall Material and Encapsulation Method on Physicochemical Properties Micro-encapsulated Fish Oil, Quarterly journal of research and innovation in food science and technology, 7(1), 13-28. doi: 10.22101/jrifst.2018.05.19.712.
[26] Renata, T., Catherine, B., Míriam, H. 2008. Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying, Journal of Food Engineering, 88: 411–418. doi: 10.1016/j.jfoodeng.2008.02.029.
[27] Swetank, Y., Hundre, P., Anaharamakrishnan, C. 2015. Effect of whey protein isolate and bcyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method, Journal of Food Chemistry, 174:16-24.doi: 10.1016/j.foodchem.2014.11.016.