بهینه‌سازی شرایط هیدرولیز آنزیمی کنسانتره پروتئینی دانه طالبی (Cucumis melo var cantalupensis) جهت دستیابی به حداکثر فعالیت آنتی اکسیدانی.

نویسندگان
1 دانشجوی کارشناسی‌ارشد شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 استاد گروه علوم و صنایع غذایی ، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 دانشیار گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
4 استادیار گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
در این پژوهش، هیدرولیز پروتئین دانه طالبی (Cucumis melo var cantalupensis) توسط آنزیم آلکالاز به‌منظور دست‌یابی به پپتیدهای زیست‌فعال دارای حداکثر قدرت ضداکسایش (فعالیت مهار رادیکال DPPH ، قدرت احیاکنندگی یون آهن (III))، انجام گرفت. در این هدف، از روش سطح‌پاسخ و طرح مرکب مرکزی با سطوح متغیرهای مستقل نسبت آنزیم به سوبسترا (E/S) 3/25 % - 0/25 % ، زمان هیدرولیز min 210- 30 ، دمای C° 55-C° 30 برای آنزیم آلکالاز استفاده‌شد. تیمار بهینه توسط نرم‌افزار برای پروتئین‌های هیدرولیزشده ، نسبت آنزیم به سوبسترای (E/S) 0/86، زمان هیدرولیز min 173/51 و دمایC° 49/93 تعیین شد. R2 و R2- تعدیل شده برای فعالیت مهار رادیکال DPPH به‌ترتیب0/80 و 0/58 و قدرت احیاکنندگی یون آهن(III)به‌ترتیب 0/96 و 0/91 به‌دست آمد. این نتایج گویای این است که مدل برازش شده توصیف نسبتا مناسبی از پراکندگی داده‌ها داشته‌ است. بر روی غلظت‌های ppm 200-50 از تیمار بهینه، آزمون های آنتی‌اکسیدانی انجام گرفت که پاسخ‌ها نشان‌دهنده تاثیر مثبت غلظت بر خصوصیات آنتی‌اکسیدانی بود و در تمامی نمونه‌ها پروتئین هیدرولیزشده با آلکالاز خصوصیات آنتی‌اکسیدانی بیشتری نسبت به پروتئین هیدرولیزنشده نشان دادند، اما از فعالیت انتی‌اکسیدانی اسیدآسکوربیک به‌ عنوان کنترل مثبت، کمتر بودند. ویژگی ضداکسایشی پپتیدهای زیست‌فعال، امکان استفاده از آن‌ها را به‌عنوان جایگزین طبیعی به‌جای ترکیبات ضداکسایش رایج در صنعت غذا میسر می‌سازد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of enzymatic hydrolysis conditions of contalupe (Cucumis melo var cantalupensis) seed protein Concentrate to achieve maximum antioxidant activity

نویسندگان English

masoomeh khosravi larijany 1
Alireza Sadeghi Mahoonak 2
Mohammad Ghorbani 3
Hoda Shahiri Tabarestany 4
1 Student of Gorgan University Of Agricultural Sciences and Natural Resources
2 professor of Gorgan University of Agricultural Science and Natural Resources
3 Associate professor of Gorgan University of Agricultural Science and Natural Resources
4 Assistant professor of Gorgan University of Agricultural Science and Natural Resources
چکیده English

In this study, cantaloupe seed protein (Cucumis melo var cantalupensis) were used to obtain bioactive peptides with maximum antioxidant power (DPPH radical scavenging activity and reducing power for alkalase treatment,. For this purpose, in this study, the surface response methodology and central composite design with different levels of independent variables of enzyme to substrate ratio (E / S) 0.25%-3.25% , hydrolysis time 30-210 min, temperature 30C°-55 °C for alkalase enzyme. Optimal condition treatment obtained as enzyme to substrate ratio (E / S) 0.86, hydrolysis time 173.51 min and temperature 49.93 °C and adjasted- R2 for DPPH radical scavenging activity were 0.80 and 0.58, respectively, and for Fe2+ reducing power were 0.96 and 0.91 (alkalase treatment), respectively. respectively, indicating that the fitted model had a relatively good description of the data distribution. Antioxidant tests were performed using different concentrations of 50-200 ppm of the optimal treatment, and the results showed a positive effect of concentration on antioxidant properties. In all samples, hydrolyzed protein with alkalase showed higher antioxidant properties compared to, but was lower than the antioxidant activity of ascorbic acid as a positive control. The antioxidant properties of bioactive peptides make it possible to use them as a natural alternative to common antioxidant compounds in the food industry.

کلیدواژه‌ها English

Cantaloupe Seed Protein
Surface Response Methodolog
enzymatic hydrolysis
Antioxidant properties
[1] Ahmadi F, Kadivar M, Shahedi M. 2007. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food chemistry.105(1):57-64.
[2] Assadpour E, Jafari S..M, Sadeghi Mahoonak A.S, Ghorbani M. 2011. Evaluation Of Protein Solubility And Water And Oil Holding Capacity Of The Legume Flours. Iranian Food Science And Technology Reseach Journal
.6(3): 184-192.
[3] Ambigaipalan P, Al-Khalifa AS, Shahidi F. 2015. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods.18:1125-37.
[4] Bamdad F, Wu J, Chen L. 2011. Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science. 54(1):20-28.
[5] Bhat, Z., S. Kumar, and H.F. Bhat. 2015. Bioactive peptides of animal origin: a review. Journal of Food Science and Technology. 52(9): p. 5377-5392.

[6]Cacciuttolo MA, Trinh L, Lumpkin JA, Rao G. 1993. Hyperoxia induces DNA damage in mammalian cells. Free Radical Biology and Medicine. 14(3):267-76.
[7]Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients. 10(11): p. 1738.1755
[8]Chang SK, Ismail A, Yanagita T, Esa NM, Baharuldin MTH. 2015. Antioxidant peptides purified and identified from the oil palm (Elaeis guineensis Jacq.) kernel protein hydrolysate. Journal of functional foods. 14:63-75.
[9] Chen H-M, Muramoto K, Yamauchi F, Nokihara K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of agricultural and food chemistry. 44(9):2619-23.
[10]Chen H-M, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of agricultural and food chemistry. 46(1):49-53.
[11] Chi C-F, Hu F-Y, Wang B, Li T, Ding G-F. 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods. P:301-313.
[12] Daliri, E.B.-M., D.H. Oh, and B.H. Lee. 2017. Bioactive peptides. Foods. 6(5): p. 32.53
[13] Dorman H, Peltoketo A, Hiltunen R, Tikkanen M. 2003. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food chemistry. 83(2):255-62.
[14] Elsohaimy S, Refaay T, Zaytoun M. 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences. 60(2):297-305.
[15]Fang X, Xie N, Chen X, Yu H, Chen J. 2012. Optimization of antioxidant hydrolysate production from flying squid muscle protein using response surface methodology. Food and Bioproducts Processing. 90(4):676-82.
[16] Feyzi S, Varidi M, Zare F, Varidi MJ. 2015. Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Journal of the Science of Food and Agriculture. 95(15):3165-3176.
[17] Fundo JF, Miller FA, Garcia E, Santos JR, Silva CL, Brandão TR. 2018. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. Journal of Food Measurement and Characterization. 12(1):292-300.
[18] Görgüç, A., E. Gençdağ, and F.M. 2020.Yılmaz, Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments–A review. Food Research International. p. 109504.
[19]Guérard F, Guimas L, Binet A. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of molecular catalysis B: Enzymatic. 19:489-98.
[20]Hamid A, Aiyelaagbe O, Usman L, Ameen O, Lawal A. 2010. Antioxidants: Its medicinal and pharmacological applications. African Journal of pure and applied chemistry. 4(8):142-151.
[21] Ismail, H. I., K. W. Chan, A. Mariod, A and Ismail, M. 2010. Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chemistry, 119(2): 643-647.
[22]Kaewka K, Therakulkait C, Cadwallader KR. 2009. Effect of preparation conditions on composition and sensory aroma characteristics of acid hydrolyzed rice bran protein concentrate. Journal of cereal science. 50(1):56-60.
[23]Kaveh Sh, 2018. Evaluation of physical and antioxidant properties of nano Vesicles loaded With bioactive peptides derived from the enzymatic hydrolysis of fenugreek seed protein (Trigonella foenum graceum) with alcalase and pancreatin. A thesis submitted in partial fulfillment of the requirements for the degree of M.Sc. Gorgan University of Agricultural Sciences and Natural Resources.
[24]Kinsella JE, Melachouris N. 1976. Functional properties of proteins in foods: a survey. Critical Reviews in Food Science & Nutrition. 7(3):219-280.
[25] Khantaphant S, Benjakul S, Ghomi MR. 2011. The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Science and Technology. 44(4):1139-48.
[26] Nourmohammadi E, Sadeghi Mahoonak A, Ghorbani M, Alami M, Sadeghi A, 2017. The optimization of The production of anti- oxidative peptides from Enzymatic hydrolysis of Pumpkin seed protein. Iranian Food Science and Technology Research Journal. 13(1): 14-26.
[27] Nourmohammadi E, Sadeghi Mahoonak A, Ghorbani M, Alami M, Sadeghi A, 2017. Optimization of pumpkin oil cake protein hydrolysis with Alcalase to achieve the maximum antioxidant activity. Journal of Gorgan University of Agricultural Sciences and Natural Resources.9(1).1-12.
[28] Nourmohammadi, E. and S. Mahoonak, A. 2018. Health implications of bioactive peptides: a review. International Journal for Vitamin and Nutrition Research. 14(13): 319-343.
[29] Parvaneh V. 2013.Quality Control & the Chemical Analysis of Food. University of Tehran Press. 7th Edition.
[30]Prieto P, Pineda M, Aguilar M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry. 269(2):337-341.
[31] Piri Sh, Sadeghi Mahoonak A,Ghorbani M, Alami M. 2018. Optimization of whey protein hydrolysate production process by alcalase enzyme. Journal of Science and Food Industry. 15(77): 135-144.
[32] Rafi N, Halim N, Amin A, Sarbon N. 2015. Response surface optimization of enzymatic hydrolysis conditions of lead tree (Leucaena leucocephala) seed hydrolysate. International Food Research Journal. 22(3). 232-45.
[33] Rajapakse N, Mendis E, Byun H-G, Kim S-K. 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of nutritional biochemistry. 16(9):562-9.
[34] Sadeghi Mahoonak A, MG. AT. MA. 2013. Optimization of different factors affecting antioxidant activity of crucian carp (carassius carassius) protein hydrolysate by response surface methodology. Journal of Food Processing and Preservation. 5(1):95-110.
[35]Sarabandi K, Mahoonak AS, Hamishehkar H, Ghorbani M, Jafari SM. 2019. Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization. Journal of Food Engineering. 25(1) :19-28.
[36] Sun Q, Shen H, Luo Y. 2011. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of food science and technology. 48(1):53-60.
[37]Tacias-Pascacio, V.G., Akadi, s. Borno, C. 2020. Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules,. 48(2): 73-86.
[38] Tu, M., Mano. C, Shado, N. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry. 10(5): p. 7-17.
[39] Varidi M, Heydari F, Shokrolahi Yancheshmeh, B. 2016. Evaluation of Physicochemical and Functional Properties of Flour Produced from Iranian Native Cucurbitaceae Seed (Melon, Cantaloupe, Watermelon and Cucurbit). Journal of Research and innovation in food science and industry. 5(3): 249-264.
[40] Vella, F.M., D. Cautela, and B. Laratta. 2019. Characterization of polyphenolic compounds in cantaloupe melon by-products. Foods. 8(6): p. 196.
[41]Wattanasiritham L, Theerakulkait C, Wickramasekara S, Maier CS, Stevens JF. 2016. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry. 192:156-162.
[42] Wu H-C, Chen H-M, Shiau, C-Y. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food research international. 36(9-10):949-957.
[43] Xie Z, Huang J, Xu X, Jin Z. 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry. 111(2):370-6.
[44]Ye N, Hu P, Xu S, Chen M, Wang S, Hong J. 2018. Preparation and characterization of antioxidant peptides from carrot seed protein. Journal of Food Quality. 7(5): 232-246
[45] You L, Zhao M, Cui C, Zhao H, Yang B. 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative food science & emerging technologies. 10(2):235-40.
[46]Yust MdM, Millán‐Linares MdC, Alcaide‐Hidalgo JM, Millán F, Pedroche J. 2012. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates. Journal of the Science of Food and Agriculture. 92(9):1994-2001.