• [1] Wang, Y., Lu, Z., Wu, H., and Lv, F. (2009). Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. International Journal of Food Microbiology, 136(1), 71-74.
• [2] Deegan, L. H., Cotter, P. D., Hill, C., and Ross, P. (2006). Bacteriocins: biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16(9), 1058-1071.
• [3] Dicks, L., and Botes, M. (2010). Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Beneficial Microbes, 1(1), 11-29
• [4] Reis, J. A., Paula, A. T., Casarotti, S. N., and Penna, A. L. B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews, 4(2), 124-140.
• [5] Crowley, S., Mahony, J., and van Sinderen, D. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science & Technology, 33(2), 93-109.
• [6] Ispirli, H., and Dertli, E. (2017). Isolation and characterisation of lactic acid bacteria from traditional koumiss and kurut. International Journal of Food Properties, 20(sup3), S2441-S2449.
• [7] Rizzello, C. G., Cassone, A., Coda, R., and Gobbetti, M. (2011). Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chemistry, 127(3), 952-959.
• [8] Lan, W. T., Chen, Y. S., Wu, H. C., and Yanagida, F. (2012). Bio-protective potential of lactic acid bacteria isolated from fermented wax gourd. Folia Microbiologica, 57(2), 99-105.
• [9] Yoo, J. Y., & Kim, S. S. (2016). Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients, 8(3), 173.
• [10] De Oliveira Vieira, K. C., Ferreira, C. D. S., Bueno, E. B. T., De Moraes, Y. A., Toledo, A. C. C. G., Nakagaki, W. R., ... and Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT-Food Science and Technology, 130, 109637.
• [11] Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., and Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25.
• [12] Kamble, R. D., & Pathade, G. R. (2010). Studies on potential application of representative promising isolates of Lactobacillus for preparation of soft drink like lassie. International Journal of Advanced Biotechnology and Research, 1(1), 5-10.
• [13] Adesulu-Dahunsi, A. T., Jeyaram, K., & Sanni, A. I. (2018). Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products. Food Control, 92, 225-231.
• [14] Peres, C. M., Peres, C., Hernández-Mendoza, A., and Malcata, F. X. (2012). Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria–with an emphasis on table olives. Trends in Food Science & Technology, 26(1), 31-42.
• [15] Toh, Z. Q., Anzela, A., Tang, M. L., and Licciardi, P. V. (2012). Probiotic therapy as a novel approach for allergic disease. Frontiers in Pharmacology, 3, 171.
• [16] Kolodziejczyk-Czepas, J. (2012). Trifolium species-derived substances and extracts—Biological activity and prospects for medicinal applications. Journal of Ethnopharmacology, 143(1), 14-23.
• [17] Peñas, E., Gómez, R., Frías, J., & Vidal-Valverde, C. (2010). Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control, 21(1), 82-88.
• [18] Manini, F., Casiraghi, M. C., Poutanen, K., Brasca, M., Erba, D., and Plumed-Ferrer, C. (2016). Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT-Food Science and Technology, 66, 275-283.
[19] Hajinia, F., Sadeghi, A., Sadeghi Mahoonak, A. R., Khomeiri, M., Maghsoudlou, Y., & Moayedi, A. (2020). Evaluation of probiotic and antifungal properties of the predominant LAB isolated from oat sourdough. Journal of Food Hygiene, 10(37).
• [20] Ilavenil, S., Vijayakumar, M., Kim, D. H., Valan Arasu, M., Park, H. S., Ravikumar, S., and Choi, K. C. (2016). Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC‐23 isolated from Italian ryegrass. Journal of the Science of Food and Agriculture, 96(2), 593-601.
• [21] Vasiee, A., Behbahani, B. A., Yazdi, F. T., Mortazavi, S. A., and Noorbakhsh, H. (2018). Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. Probiotics and Antimicrobial Proteins, 10(2), 258-268.
• [22] Sakandar, H. A., Usman, K., and Imran, M. (2018). Isolation and characterization of gluten-degrading Enterococcus mundtii and Wickerhamomyces anomalus, potential probiotic strains from indigenously fermented sourdough (Khamir). LWT-Food Science and Technology, 91, 271-277.
• [23] Shirvani, A., Goli, S. A. H., Shahedi, M., & Soleimanian-Zad, S. (2016). Changes in nutritional value and application of thyme (Thymus vulgaris) essential oil on microbial and organoleptic markers of Persian clover (Trifolium resupinatum) sprouts. LWT-Food Science and Technology, 67, 14-21.
• [24] AACC (2010). Protein 46-10, fat 30-10 and ash 08-01 methods. In. St. Paul, MN, USA: American association of cereal chemists (AACC) international.
• [25] Rizzello, C. G., Nionelli, L., Coda, R., Di Cagno, R., and Gobbetti, M. (2010). Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread. European Food Research and Technology, 230(4), 645-654.
• [26] Abnous, K., Brooks, S. P., Kwan, J., Matias, F., Green-Johnson, J., Selinger, L. B., ... and Kalmokoff, M. (2009). Diets enriched in oat bran or wheat bran temporally and differentially alter the composition of the fecal community of rats. The Journal of Nutrition, 139(11), 2024-2031.
• [27] Cheong, E. Y., Sandhu, A., Jayabalan, J., Le, T. T. K., Nhiep, N. T., Ho, H. T. M., ... and Turner, M. S. (2014). Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control, 46, 91-97.
• [28] Jorgensen, J. H., and Turnidge, J. D. (2015). Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, 1253-1273.
• [29] Rolim, F.R.L., dos Santos, K.M.O., de Barcelos, S.C., do Egito, A.S., Ribeiro, T.S., da Conceição, M.L., et al. (2015). Survival of Lactobacillus rhamnosus EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic bacteria in semi-hard goat cheese. LWT-Food Science and Technology, 63(2), 807-813.
• [30] Collado, M. C., Meriluoto, J., and Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226(5), 1065-1073.
• [31] Tuo, Y., Yu, H., Ai, L., Wu, Z., Guo, B., and Chen, W. (2013). Aggregation and adhesion properties of 22 Lactobacillus strains. Journal of Dairy Science, 96(7), 4252-4257.
• [32] Bautista-Gallego, J., Arroyo-López, F. N., Rantsiou, K., Jiménez-Díaz, R., Garrido-Fernández, A., and Cocolin, L. (2013). Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Research International, 50(1), 135-142.
• [33] Rojo-Bezares, B., Sáenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., and Torres, C. (2006). Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. International Journal of Food Microbiology, 111(3), 234-240.
• [34] Angmo, K., Kumari, A., and Bhalla, T. C. (2016). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Science and Technology, 66, 428-435.
• [35] Fouad, A. A., & Rehab, F. M. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 14(3), 233-246.
• [36] Warle, B., Riar, C., Gaikwad, S., & Mane, V. (2015). Effect of germination on nutritional quality of soybean (Glycine Max). Journal of Environmental Science, Toxicology and Food Technology, 1(1.3).
• [37] Ohtsubo, K. I., Suzuki, K., Yasui, Y., & Kasumi, T. (2005). Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis, 18(4), 303-316.
• [38] Bau, H., Villaume, C., Nicolas, J., & Mejean, L. (1997). Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. Journal of the Science of Food and Agriculture, 73, 1-9.
• [39] Oguntoyinbo, F. A., and Narbad, A. (2012). Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiology, 31(2), 254-262.
• [40] Wahyuni, E., and Taufiq, T. T. (2021). Isolation and identification of goat milk-derived Lactobacillus paracasei M104 and Pediococcus pentosaceus M103 and their potential use as starter culture for fermentation. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 374-377.
• [41] Sáez, G. D., Saavedra, L., Hebert, E. M., and Zárate, G. (2018). Identification and biotechnological characterization of lactic acid bacteria isolated from chickpea sourdough in northwestern Argentina. LWT-Food Science and Technology, 93, 249-256
• [42] Lind, H., Jonsson, H., & Schnürer, J. (2005). Antifungal effect of dairy propionibacteria—contribution of organic acids. International Journal of Food Microbiology, 98(2), 157-165.
• [43] Gänzle, M., and Ripari, V. (2016). Composition and function of sourdough microbiota: From ecological theory to bread quality. International Journal of Food Microbiology, 239, 19-25.
• [44] Jin, J., Nguyen, T. T. H., Humayun, S., Park, S., Oh, H., Lim, S., ... and Kim, D. (2021). Characteristics of sourdough bread fermented with Pediococcus pentosaceus and Saccharomyces cerevisiae and its bio-preservative effect against Aspergillus flavus. Food Chemistry, 345, 128787.
• [45] Gerez, C. L., Torino, M. I., Obregozo, M. D., and de Valdez, G. F. (2010). A ready-to-use antifungal starter culture improves the shelf life of packaged bread. Journal of Food Protection, 73(4), 758-762.
• [46] Muhialdin, B. J., Hassan, Z., and Saari, N. (2018). In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Annals of Microbiology, 68(9), 557-567.
• [47] Gerez, C. L., Torino, M. I., Rollán, G., and de Valdez, G. F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 20(2), 144-148.
• [48] Leroy, F., and De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78.
• [49] Schnürer, J., and Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16(1-3), 70-78.
• [50] Elsser-Gravesen, D., and Elsser-Gravesen, A. (2013). Biopreservatives. Biotechnology of Food and Feed Additives, 29-49.
• [51] Batish, V. K., Roy, U., Lal, R., and Grover, S. (1997). Antifungal attributes of lactic acid bacteria e a review. Critical Reviews in Biotechnology, 17, 209-225.
• [52] Li, H., Zhang, S., Lu, J., Liu, L., Uluko, H., Pang, X., ... and Lv, J. (2014). Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control, 43, 57-64.
• [53] Jeske, S., Zannini, E., Lynch, K. M., Coffey, A., and Arendt, E. K. (2018). Polyol-producing lactic acid bacteria isolated from sourdough and their application to reduce sugar in a quinoa-based milk substitute. International Journal of Food Microbiology, 286, 31-36.
• [54] Ayyash, M., Abu-Jdayil, B., Olaimat, A., Esposito, G., Itsaranuwat, P., Osaili, T., ... and Liu, S. Q. (2020). Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydrate Polymers, 229, 115462.
• [55] Rocha, J. M., and Malcata, F. X. (2016). Microbial ecology dynamics in Portuguese broa sourdough. Journal of Food Quality, 39(6), 634-648.
• [56] Bartkiene, E., Lele, V., Ruzauskas, M., Domig, K. J., Starkute, V., Zavistanaviciute, P., ... and Rocha, J. M. (2020). Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms, 8(1), 64.
• [57] Bajaj, B. K., Claes, I. J., & Lebeer, S. (2021). Functional mechanisms of probiotics. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 321-327.
• [58] Mortazavian, A. M., Mohammadi, R., and Sohrabvandi, S. (2012). Delivery of probiotic microorganisms into gastrointestinal tract by food products. New Advances in the Basic and Clinical Gastroenterology, 10, 47946.
• [59] Kim, J., Muhammad, N., Jhun, B. H., and Yoo, J. W. (2016). Probiotic delivery systems: a brief overview. Journal of Pharmaceutical Investigation, 46(4), 377-386.
• [60] Jin, J., Zhang, B., Guo, H., Cui, J., Jiang, L., Song, S., ... & Ren, F. (2012). Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. Plos One, 7(12), e50777.
• [61] Moumita, S., Goderska, K., Johnson, E. M., Das, B., Indira, D., Yadav, R., ... and Jayabalan, R. (2017). Evaluation of the viability of free and encapsulated lactic acid bacteria using in-vitro gastro intestinal model and survivability studies of synbiotic microcapsules in dry food matrix during storage. LWT-Food Science and Technology, 77, 460-467.
• [62] Montville, T. J., and Matthews, K. R. (2012). Physiology, growth, and inhibition of microbes in foods. Food microbiology: Fundamentals and Frontiers, 1-18.
• [63] Sharma, S., Kandasamy, S., Kavitake, D., and Shetty, P. H. (2018). Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT-Food Science and Technology, 97, 53-60.
• [64] Janković, T., Frece, J., Abram, M., and Gobin, I. (2012). Aggregation ability of potential probiotic Lactobacillus plantarum strains. International Journal of Sanitary Engineering Research, 6(1), 19-24.
• [65] Tareb, R., Bernardeau, M., Gueguen, M., and Vernoux, J. P. (2013). In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. Journal of Medical Microbiology, 62(4), 637-649.
• [66] Shangpliang, H. N. J., Sharma, S., Rai, R., and Tamang, J. P. (2017). Some technological properties of lactic acid bacteria isolated from Dahi and Datshi, naturally fermented milk products of Bhutan. Frontiers in Microbiology, 8, 116.
• [67] Li, Q., Liu, X., Dong, M., Zhou, J., and Wang, Y. (2015). Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from traditional fermented food. International Journal of Agricultural Policy, 3(2), 84-92.
• [68] Tokatlı, M., Gülgör, G., Bağder Elmacı, S., Arslankoz İşleyen, N., & Özçelik, F. (2015). In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. BioMed Research International, 2015.
• [69] Palachum, W., Chisti, Y., and Choorit, W. (2018). In-vitro assessment of probiotic potential of Lactobacillus plantarum WU-P19 isolated from a traditional fermented herb. Annals of Microbiology, 68(2), 79-91.
• [70] Abriouel, H., Muñoz, M. D. C. C., Lerma, L. L., Montoro, B. P., Bockelmann, W., Pichner, R., ... and Benomar, N. (2015). New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International, 78, 465-481.
• [71] Bacha, K., Mehari, T., and Ashenafi, M. (2010). Antimicrobial susceptibility patterns of LAB isolated from wakalim, a traditional ethiopian fermented sausage. Journal of food safety, 30(1), 213-223.
• [72] Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation, 111(9), 1265-1273.
• [73] Ogunsakin, A. O., Vanajakshi, V., Anu-Appaiah, K. A., Vijayendra, S. V. N., Walde, S. G., Banwo, K., ... & Prabhasankar, P. (2017). Evaluation of functionally important lactic acid bacteria and yeasts from Nigerian sorghum as starter cultures for gluten-free sourdough preparation. LWT-Food Science and Technology, 82, 326-334.