ویژگی‌های فیزیکی و شیمیایی پودر روغن بزرک تولید شده با سلولز ریزبلور و برگ رزماری

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران
2 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
3 استادیار، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران
4 دانشیار، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد تبریز، تبریز، ایران
چکیده
امروزه تمایل به مصرف روغن بزرک به عنوان منبع گیاهی غنی از اسیدهای چرب امگا-3 افزایش یافته است. اما مقدار اسیدهای چرب غیراشباع زیاد روغن بزرک، آن را شدیداً مستعد اکسیداسیون می­کند. در این پژوهش، برای تولید پودر روغن بزرک با پایداری بیشتر، پودر برگ رزماری در 3 سطح (5، 10 و 15 % روغن (w/w)) و 3 نسبت مختلف از روغن بزرک و سلولز ریزبلور (50:50، 50:75 و 50:100) با هم مخلوط شدند. نتایج نشان دادند که با پودر کردن روغن و با افزودن برگ رزماری، سرعت افزایش عدد پراکسید، تیوباربیتوریک اسید و اسیدیته در طول نگهداری به طور معنی­داری (05/0 > p) کاهش یافت. نگهداری در یخچال (ºC 4) نسبت به دمای محیط (ºC 25)، در افزایش پایداری اکسیداسیونی نمونه­ها در طول نگهداری مؤثرتر بود. با افزایش غلظت سلولز ریزبلور و نیز برگ رزماری، پایداری اکسیداسیونی افزایش یافت. برگ رزماری همچنین موجب افزایش ترکیبات فنلی، کلروفیل­ها و کاروتنوئیدها در نمونه­ها شد. مخلوط کردن روغن با سلولز ریزبلور باعث کاهش معنی­دار (05/0 > p) سرعت تجزیه ترکیبات فنلی، کلروفیل و کاروتنوئید شد. نتایج این پژوهش نشان داد که با مخلوط کردن روغن بزرک با سلولز ریزبلور و برگ رزماری، می­توان محصولی پودری با پایداری اکسیداسیونی مناسب تهیه کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physicochemical properties of linseed oil powder produced with microcrystalline cellulose and rosemary leaves

نویسندگان English

Mahsa Farhoudpour 1
Sodeif Azadmard_damirchi 2
M Gharekhani 3
Narmela Asefi 4
1 Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
2 Department of Food Science and Technology, University of Tabriz, Tabriz, Iran
3 Assistant Professor, Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
4 Assخزهشفث Professor, Department of Food Science and Technology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
چکیده English

Today, the tendency to use flaxseed oil as a rich plant source of ω-3 fatty acids has increased. But the high content of unsaturated fatty acids in flaxseed oil makes it highly susceptible to oxidation. In this study, to produce flaxseed oil powder with more stability than oil, rosemary leaf powder (as a natural source of antioxidants) in 3 levels (5, 10 and 15% of oil) and 3 different proportions of flaxseed oil and Microcrystalline cellulose (50:50, 50:75 and 50: 100) were mixed together. The results showed that by transporting the oil to the powder form and addition of rosemary leaves, the rate of increase in peroxide, thiobarbituric acid and acidity during storage was decreased significantly (p < 0.05). Storage at refrigerator (4 ºC) was more effective than room temperature (25 ºC) in increasing oxidative stability of samples during storage. Oxidative stability increased with increasing the concentration of microcrystalline cellulose and rosemary leaves. Addition of rosemary leaves caused a slight increase in acidity in the samples. Rosemary leaves also increased phenolic compounds, chlorophylls and carotenoids in the samples. Mixing the oil with microcrystalline cellulose significantly (p < 0.05) reduced the decomposition rate of phenolic compounds, chlorophyll and carotenoid contents. It was concluded that by mixing flaxseed oil with microcrystalline cellulose and rosemary leaves, a new powder product with suitable oxidative stability is introduced, which has the potential to be applied directly on foods such as salads or to be used in different food formulations to fortify them with natural antioxidants and ω-3 essential fatty acids.

کلیدواژه‌ها English

Oil powder
Rosemary
Flaxseed oil
Microcrystalline Cellulose
[1] Lan, Y., Ohm, J.-B., Chen, B., and Rao, J., 2020. Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocolloids, 104, 105731.
[2] Nasirpour‐Tabrizi, P., Azadmard‐Damirchi, S., Hesari, J., Khakbaz Heshmati, M., and Savage, G.P., 2020. Production of a spreadable emulsion gel using flaxseed oil in a matrix of hydrocolloids. Journal of Food Processing and Preservation, 44 (8), e14588.
[3] Suri, K., Singh, B., Kaur, A., Yadav, M.P., and Singh, N., 2020. Influence of microwave roasting on chemical composition, oxidative stability and fatty acid composition of flaxseed (Linum usitatissimum L.) oil. Food Chemistry, 326, 126974.
[4] Shahidi, F. and Zhong, Y., 2010. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39 (11), 4067-4079.
[5] Yeşilsu, A.F. and Özyurt, G., 2019. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment. Journal of Food Engineering, 240, 171-182.
[6] Wang, Y.-Z., Fu, S.-G., Wang, S.-Y., Yang, D.-J., Wu, Y.-H.S., and Chen, Y.-C., 2018. Effects of a natural antioxidant, polyphenol-rich rosemary (Rosmarinus officinalis L.) extract, on lipid stability of plant-derived omega-3 fatty-acid rich oil. LWT, 89, 210-216.
[7] Carneiro, H.C., Tonon, R.V., Grosso, C.R., and Hubinger, M.D., 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115 (4), 443-451.
[8] Nasirpour-Tabrizi, P., Azadmard-Damirchi, S., Hesari, J., Heshmati, M.K., and Savage, G.P., 2020. Rheological and physicochemical properties of novel low-fat emulgels containing flaxseed oil as a rich source of ω-3 fatty acids. LWT, 133, 110107.
[9] Salimzadeh, S. and Azadmard-Damirchi, S., 2018. Production of mixture of flaxseed and sesame seeds powder incorporated with olive oil and evaluation of its qualitative properties during storage. Food Science and Technology, 14 (73), 317-311.
[10] Saga, L.C., Rukke, E.O., Liland, K.H., Kirkhus, B., Egelandsdal, B., Karlsen, J., and Volden, J., 2011. Oxidative stability of polyunsaturated edible oils mixed with microcrystalline cellulose. Journal of the American Oil Chemists' Society, 88 (12), 1883-1895.
[11] AOCS, 1997. Official methods and recommended practices of the AOCS. Champaign, IL: American Oil Chemists' Society.
[12] Hu, Z. and Zhong, Q., 2010. Determination of thiobarbituric acid reactive substances in microencapsulated products. Food Chemistry, 123 (3), 794-799.
[13] Gouvinhas, I., Machado, J., Gomes, S., Lopes, J., Martins-Lopes, P., and Barros, A.I., 2014. Phenolic composition and antioxidant activity of monovarietal and commercial Portuguese olive oils. Journal of the American Oil Chemists' Society, 91 (7), 1197-1203.
[14] Isabel Minguez‐Mosquera, M., Rejano‐Navarro, L., Gandul‐Rojas, B., SanchezGomez, A.H., and Garrido‐Fernandez, J., 1991. Color‐pigment correlation in virgin olive oil. Journal of the American Oil Chemists' Society, 68 (5), 332-336.
[15] Choe, E. and Min, D.B., 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5 (4), 169-186.
[16] Liu, S., Low, N., and Nickerson, M.T., 2010. Entrapment of flaxseed oil within gelatin‐gum arabic capsules. Journal of the American Oil Chemists' Society, 87 (7), 809-815.
[17] Kolanowski, W., Laufenberg, G., and Kunz, B., 2004. Fish oil stabilisation by microencapsulation with modified cellulose. International Journal of Food Sciences and Nutrition, 55 (4), 333-343.
[18] Partanen, R., Raula, J., SEPPAnen, R., Buchert, J., Kauppinen, E., and Forssell, P., 2008. Effect of relative humidity on oxidation of flaxseed oil in spray dried whey protein emulsions. Journal of Agricultural and Food Chemistry, 56 (14), 5717-5722.
[19] Karaca, A.C., Nickerson, M., and Low, N.H., 2013. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139 (1-4), 448-457.
[20] Onsaard, E., Putthanimon, J., Singthong, J., and Thammarutwasik, P., 2018. Oxidation stability of sesame oil encapsulated by spray drying. International Food Research Journal, 25 (2), 784-792.
[21] Mania, S., Tylingo, R., and Michałowska, A., 2018. The drop-in-drop encapsulation in chitosan and sodium alginate as a method of prolonging the quality of linseed oil. Polymers, 10 (12), 1355.
[22] Ahmadi-Aghdam, E., Hesari, J., Azadmard-Damirchi, S., Jahangiry, F., and Bodbodak, S., 2016. Effect of rosemary extract on physicochemical properties and stability of buuter from sour cream. Journal of Food Science and Technology, 13 (50), 33-39.
[23] Ayadi, M., Grati-Kamoun, N., and Attia, H., 2009. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food and Chemical Toxicology, 47 (10), 2613-2619.
[24] Odeh, D., Kraljić, K., Benussi Skukan, A., and Škevin, D., 2021. Oxidative stability, microbial safety, and sensory properties of flaxseed (Linum usitatissimum L.) oil infused with spices and herbs. Antioxidants, 10 (5), 785.
[25] Mazaheri, Y., Torbati, M., Azadmard‐Damirchi, S., and Savage, G.P., 2019. Oil extraction from blends of sunflower and black cumin seeds by cold press and evaluation of its physicochemical properties. Journal of Food Processing and Preservation, 43 (10), e14154.
[26] Wang, H., Qiu, C., Abbasi, A.M., Chen, G., You, L., Li, T., Fu, X., Wang, Y., Guo, X., and Liu, R.H., 2015. Effect of germination on vitamin C, phenolic compounds and antioxidant activity in flaxseed (Linum usitatissimum L.). International Journal of Food Science & Technology, 50 (12), 2545-2553.
[27] Borrás-Linares, I., Stojanović, Z., Quirantes-Piné, R., Arráez-Román, D., Švarc-Gajić, J., Fernández-Gutiérrez, A., and Segura-Carretero, A., 2014. Rosmarinus officinalis leaves as a natural source of bioactive compounds. International Journal of Molecular Sciences, 15 (11), 20585-20606.