تأثیر ازن و ذغال فعال بر پاتولین در کنسانتره سیب

نویسندگان
1 دانشجوی کارشناسی ارشد، دانشگاه آزاد اسلامی واحد خوی، ایران
2 استادیار گروه علوم صنایع غذایی، دانشگاه آزاد اسلامی واحد خوی، ایران
3 دانشیار دانشکده کشاورزی، دانشگاه ارومیه، ایران
چکیده
مایکوتوکسین، یک مشکل اصلی برای سلامت انسان به خصوص در صنعت آب میوه و کنسانتره می­باشد. استاندارد جهانی پاتولین در آب میوه­ها در حدود 50 ppb می­باشد. بررسی­ها نشان می­دهد که استفاده از روش­های مختلف فیزیکی، شیمیایی و بیولوژیکی می­تواند مقدار پاتولین را کاهش دهد. در همین راستا، میزان مایکوتوکسین پاتولین در نمونه­های کنسانتره سیب و کاهش آن به وسیله اُزُن، زغال فعال و اثر توام آن­ها مورد ارزیابی قرار گرفت. برای مقایسه تاثیر جداگانه هر دو عامل از آزمون تجزیه واریانس یک طرفه ، برای مقایسه اثر توام از آزمون تجزیه واریانس دو طرفه و مقایسه میانگین از آزمون توکی در سطح احتمال 5 درصد استفاده گردید. نتایج حاصل از این تحقیق نشان داد که بین افزایش غلظت زغال فعال و همچنین مدت زمان اُزُن دهی رابطه مستقیم وجود دارد بیشترین میزان کاهش پاتولین در غلظت 2/0 گرم زغال فعال و 9 دقیقه اُزُن دهی به دست آمد، همچنین در بررسی اثر توام غلظت­های زغال فعال و زمان­های اُزُن دهی نتایج نشان داد بین دو متغیر اثر متقابل وجود دارد (­(P= 0.006 و در زمان 8 دقیقه اُزُن دهی با غلظت 5/1 گرم زغال فعال بیشترین کاهش پاتولین مشاهده گردید. بررسی حاضر نشان داد با به کارگیری گاز اُزُن به همراه زغال فعال می­توان در کارخانجات تولید آب میوه و کنسانتره میزان پاتولین را در حد قابل قبولی کاهش داد و با روش­های مناسب کشاورزی (GAP) گامی موثر در سلامت جامعه و صادرات آب میوه و کنسانتره برداشت.

کلیدواژه‌ها: مایکوتوکسین، پاتولین، اُزُن، زغال فعال، کنسانتره سیب
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Ozone and Activated Charcoal on Patulin in Apple Concentrate

نویسندگان English

elshan bashiri 1
sara matini 2
Shahram Aramideh 3
1 Master Student, Islamic Azad University, Khoy Branch, Khoy, Iran
2 Assistant Professor of Food Science Department, Faculty of Agriculture, Islamic Azad University, Khoy Branch, Iran
3 Associate Professor, Faculty of Agriculture, Urmia University
چکیده English

Patulin a major human health problem, especially in the juice. The global standard of patulin in fruit juices is about 50 ppb. Studies show that using different physical, chemical and biological methods can reduce the amount of patulin. Therefore, the amount of mycotoxin patulin in apple concentrate samples and their reduction by ozone, activated charcoal and their combined effects were evaluated. One-way ANOVA and two-way ANOVA were used to analyses effects of the two factors separately and combination form and for compration of means Tukey test at the 5% level of significance were used too. According to the results of this study on the reduction of patulin concentration by two variables of activated charcoal concentration and ozonation time showed that there is a direct relationship between increase the activated charcoal concentration and also ozonation time. The highest decrease in patulin concentration was obtained in 0.2 g of activated charcoal and 9 minutes ozonation. The results also showed that there was an interaction between the two variables (P = 0.006 and the highest decrease in patulin was observed at 8 minutes of ozonation and 1.5 g of activated charcoal. patulin in the juice and concentrate factories and can be an effective step in health by GAP (Green Agricultural Practice) and exports of fruit juice and concentrates.

Keywords: Mycotoxin, Patulin, Ozone, Activated charcoal, Apple concentrate

کلیدواژه‌ها English

Mycotoxin
Patulin
Ozone
Activated charcoal
Apple concentrate
[1] Puel, O., Galtier, P., & Oswald, I. P. (2010). Biosynthesis and toxicological effects of patulin. Toxins, 2(4), 613-631.
[2] Fathi Achachloii, B., Ahmadi Zonooz, A., Asadi, y., Hesari, J., Asgari Zakaria, R., (2005). Effect of active carbon on patulin reduction at apple juice. IJFST, Vol. 2, No. 2, Summer. In Persian.
[3] Poostforoushfard, A., Pishgar, A. R., Berizi, E., Nouraei, H., Sobhani, Z., Mirzaie, R., & Zomorodian, K. (2017). Patulin contamination in apple products marketed in Shiraz, Southern Iran. Current Medical Mycology, 3(4), 32.
[4] Tavakkoli, R., Mohammadi, A., Attaran, A., (2011). Determination of the amount of patulin in apple juice using micro-extraction method with dispersed solvent drops with high-performance liquid chromatography. Master Thesis - Payame Noor University of Markazi Province (Ministry of Science, Research, and Technology). In persin.
[5] Fathi Achachloii, B., Ahmadi Zonooz, A., Asadi, y., Hesari, J., Asgari Zakaria, R., (2002). Effect of active carbon on patulin reduction at apple juice. Master Thesis – Tabriz University (Ministry of Science, Research, and Technology). In Persian.
[6] Miller, F. A., Silva, C. L., & Brandão, T. R. (2013). A review on ozone-based treatments for fruit and vegetables preservation. Food Engineering Reviews, 5(2), 77-106
[7] Diao, E., Wang, J., Li, X., Wang, X., Song, H., & Gao, D. (2019). Effects of ozone processing on patulin, phenolic compounds and organic acids in apple juice. Journal of Food science and Technology, 56(2), 957-965.
[8] Diao, E., Hou, H., Chen, B., Shan, C., & Dong, H. (2013). Ozonolysis efficiency and safety evaluation of aflatoxin B1 in peanuts. Food and Chemical Toxicology, 55, 519-525.
[9] Ashirifie-Gogofio, J., Floros, J. D., & LaBorde, L. F. (2009). Ozone degradation of patulin in model apple juice system. In Annual Meeting & Food Expo, Anaheim, CA: IFT (Vol. 9).
[10] Cataldo, F. (2008). Ozone decomposition of Patulin—a micotoxin and food contaminant. Ozone: Science and Engineering, 30(3), 197-201.
[11] Gökmen, V., Artık, N., Acar, J., Kahraman, N., & Poyrazoğlu, E. (2001). Effects of various clarification treatments on patulin, phenolic compound and organic acid compositions of apple juice. European Food Research and Technology, 213(3), 194-199.
[12] Ekinci, R. (2013). Effect of activated charcoal on some phenolic compounds of apple juice. Asian Journal of Chemistry, 25 (5): 2905-2908
[13] Kadakal, C., & Nas, S. (2002). Effect of activated charcoal on patulin, fumaric acid and some other properties of apple juice. Food/Nahrung, 46(1), 31-33.
[14] Huebner, H. J., Mayura, K., Pallaroni, L., Ake, C. L., Lemke, S. L., Herrera, P., & Phillips, T. D. (2000). Development and characterization of a carbon-based composite material for reducing patulin levels in apple juice. Journal of Food Protection, 63(1), 106-110.
[15] EnJie, D., Wei, L., Yue, W., JiaRong, H., Fei, W., ChenLin, W., & XiangYang, L. (2018). Design and application of ozone detoxification equipment for patulin in contaminated apple juice. Transactions of the Chinese Society of Agricultural Engineering, 34(12), 282-287.
[16] Karaca, H., & Sedat Velioglu, Y. (2009). Effects of some metals and chelating agents on patulin degradation by ozone. Ozone: Science & Engineering, 31(3), 224-231.
[17] Karaca, H., & Velioglu, Y. S. (2007). Ozone applications in fruit and vegetable processing. Food Reviews International, 23(1), 91-106.
[18] Tzortzakis, N., Singleton, I., & Barnes, J. (2008). Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biology and Technology, 47(1), 1-9.
[19] Rahimi, A., Torkibaghbadrani, Z.,Shakerian., A., (2015). The amount of patulin in apple dish and apple juice offered in Shahrekord city. Journal of Food Hygiene, 4(3). In Persian.
[20] Eskandari, M.H. , Montaseri, H., Mesbahi, Gh. , TaheriYaganeh, A., , Niakousari, M., Karami, S. (2014). Effect of different processing stages of commercial fruit leather on patulin reduction. Journal of Food Hygiene, 4(15) In Persian.