[1] Rymbai, H., Sharma, R. R., and Srivastav, M. Bio-colorants and its implications in health and food industry–a review. International Journal of Pharmacological Research, 2011; 3(4): 2228-2244.
[2] Nuhu, A. A. Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. Journal of Marine biology, 2013.
[3] Nagpal, N., Munjal, N., and Chatterjee, S. Microbial pigments with health benefits-a mini review. Trend in Biosciences, 2011; 4: 157-160.
[4] Nemoto-Kawamura, C., Hirahashi, T., Nagai, T., Yamada, H., Katoh, T., and Hayashi, O. Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. Journal of nutritional science and vitaminology, 2004; 50(2): 129-136.
[5] Romay, C. H., Gonzalez, R., Ledon, N., Remirez, D., and Rimbau, V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current protein and peptide science, 2003; 4(3): 207-216.
[6] Sonani, R. R., Singh, N. K., Kumar, J., Thakar, D., and Madamwar, D. Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: An antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochemistry, 2015; 49(10): 1757-1766.
[7] Martelli, G., Folli, C., Visai, L., Daglia, M., and Ferrari, D. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, 2014; 49(1), 154-159.
[8] Jespersen, L., Strømdahl, L. D., Olsen, K., and Skibsted, L. H. Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 2005; 220(3), 261-266.
[9] Yan, M., Liu, B., Jiao, X., and Qin, S. Preparation of phycocyanin microcapsules and its properties. Food and bioproducts processing, 2014; 92(1), 89-97.
[10] Machado, A. R., Assis, L. M., Costa, J. A. V., Badiale-Furlong, E., Motta, A. S., Micheletto, Y. M. S., and Souza-Soares, L. A. Application of sonication and mixing for nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. International Food Research Journal, 2014; 21(6): 2201.
[11] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., and Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 2011; 1806-1815.
[12] Salehifar, M., Shahbazizadeh, S., Khosravi, K., Bahmadi, H., and Ferdowsi, R. Possibility of using microalgae Spirulina platensispowder in industrial production of Iranian traditional cookies. Iranian Journal of Nutrition Sciences & Food Technology, 2013; 7 (4): 63-72
[13] Agustini, T. W., Ma’ruf, W. F., & Wibowo, B. A. Study on the effect of different concentration of Spirulina platensis paste added into dried noodle to its quality characteristics. In IOP Conference Series: Earth and Environmental Science, 2017; (Vol. 55, No. 1, p. 012068). IOP Publishing.
[14] Kamble, S. P., Gaikar, R. B., Padalia, R. B., and Shinde, K. D. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. Journal of Applied Pharmaceutical Science, 2013; 3(8): 149-153
[15] Prabakaran, P., and Ravindran, A. D. Efficacy of different extraction methods of phycocyanin from Spirulina platensis. International Journal of Research in Pharmacy and Life Sciences, 2013; 1(1): 15-20.
[16] Murugan, T., and Rajesh, R. Cultivation of two species of Spirulina (Spirulina platensis and Spirulina platensis var lonar) on sea water medium and extraction of C-phycocyanin. European Journal of Experimental Biology, 2014; 4(2): 93-97.
[17] Leema, J. M., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., and Karthikayulu, S. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource technology, 2010; 101(23): 9221-9227.
[18] Patil, G., Chethana, S., Sridevi, A. S., and Raghavarao, K. S. M. S. Method to obtain C-phycocyanin of high purity. Journal of chromatography A, 2006; 1127(1-2): 76-81.
[19] Kumar, D. D., Mann, B., Pothuraju, R., Sharma, R., and Bajaj, R. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream. Food & function, 2016; 7(1): 417-424.
[20] Akalın, A. S., and Erişir, D. Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low‐fat probiotic ice cream. Journal of food science, 2008; 73(4): M184-M188.
[21] Mahdian, E., Karajian, R., and Sabri, S. The effect of milk fat replacement with inulin and milk protein concentrate on physicochemical and sensory properties of low fat ice cream. Journal of Innovation in Food Science and Technology, 2013; 5 (4): 21-29
[22] Amiri, Z., and Ahmadi, M. The possibility of substitution of carboxy methyl cellulose and tragacanth gum on the physical and sensory properties of ice cream. Journal of Food Research, 2014; 24 (2): 279-290
[23] Marshall R.T., and Arbuckle W.S. The science of Ice cream. 5thed. Torkashvand, Y. Eta. Tehran; 1996.
[24] Soukoulis, C., Chandrinos, I., and Tzia, C. Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream. LWT-Food Science and Technology, 2008; 41(10), 1816-1827.
[25] Pon, S. Y., Lee, W. J., and Chong, G. H. Textural and rheological properties of stevia ice cream. International Food Research Journal, 2015; 22(4): 1544-1549.
[26] Hettiarachchi, C. A., and Illeperuma, D. C. K. Developing a trained sensory panel for comparison of different brands of vanilla ice cream using descriptive sensory analysis. Journal of the National Science Foundation of Sri Lanka, 2015; 43(1): 45-55.
[27] Saranraj, P., and Sivasakthi, S. Spirulina platensis–food for future: a review. Asian Journal of Pharmaceutical Science and Technology, 2014; 4(1), 26-33.
[28] Dewi, E. N., Purnamayati, L., and Kurniasih, R. A. Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Jurnal Teknologi, 2016; 78(4): 45–50.
[29] Dewi, E. N., Purnamayati, L., and Kurniasih, R. A. Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. In IOP Conference Series: Earth and Environmental Science (Vol. 55, No. 1, p. 012060), 2017; IOP Publishing.
[30] Holkem, A. T., Raddatz, G. C., Nunes, G. L., Cichoski, A. J., Jacob-Lopes, E., Grosso, C. R. F., and de Menezes, C. R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Science and Technology, 2016; 71: 302-308.
[31] Suzery, M., Majid, D., Setyawan, D., and Sutanto, H. Improvement of stability and antioxidant activities by using phycocyanin-chitosan encapsulation technique. In IOP Conference Series: Earth and Environmental Science (Vol. 55, No. 1, p. 012052), 2017; IOP Publishing.
[32] Rasouli, F., Berenji, sh., and Shahab, A. Optimization of traditional Iranian ice cream formulation containing spirulina microalgae using response surface methodology, Journal of Food Technology and Nutrition, 2017; 4 (3): 18-28
[33] Kerdchouay, P., and Surapat, S. Effect of skimmed milk substitution by whey protein concentrate in low-fat coconut milk ice cream. Journal of Food Process Technology, 2012; 16(2): 25-34.
[34] Gohari, A., Habibi, M., and Hadad, M. Effect of date syrup as a substitute for sugar on the physicochemical and sensory properties of soft ice cream. Iranian Food Science and Technology Research Journal, 2005; 1 (2): 23-32
[35] Eslami, A., Fadai, V., Khosravi, K., and Mazinani, S. The effect of powdered Spirulina platensis biomass on some physicochemical and sensory properties of probiotic doogh containing powdered mint. Innovative Food Technologies, 2015; 5 (2): 59-70
[36] Bolliger, S., Wildmoser, H., Goff, H. D., and Tharp, B. W. Relationships between ice cream mix viscoelasticity and ice crystal growth in ice cream. International Dairy Journal, 2000; 10(11), 791-797.
[37] Bahramparvar, M., Hadad, M., and Razavi, M. Effect of selected stabilizers on physicochemical and sensory properties of ice cream. Journal of Food Processing and Production, 2011; 1 (1): 4-14
[38] Amiri, S., Alami, M., Rezai, R., Dadpour, M., and Khamiri, M. Effect of isfarzeh and basil seed mucilages on physicochemical rheological and sensory properties of ice cream. Journal of Research and Innovation in Food Science and Technology, 2012; 1 (1): 23-36
[39] Milani, E., and Koocheki, A. The effects of date syrup and guar gum on physical, rheological and sensory properties of low fat frozen yoghurt dessert. International Journal of Dairy Technology, 2011; 64(1): 121-129.
[40] Muse, M. R., and Hartel, R. W. Ice cream structural elements that affect melting rate and hardness. Journal of dairy science, 2004; 87(1): 1-10.
[41] El-Zeini, H. M., El-Abd, M. M., Mostafa, A. Z., and El-Ghany, F. H. Y. Effect of incorporating whey protein concentrate on chemical, rheological and textural properties of ice cream. Journal of Food Processing and Technology, 2016; 7(2): 1-7
[42] Pandiyan, C., Villi, R. A., Kumaresan, G., and Elango, G. R. A. Effect of incorporation of whey protein concentrate on quality of ice cream. Tamilnadu Journal of Veterinary and Animal Sciences, 2012; 8(4), 189-193.
[43] Sonwane, R. S., and Hembade, A. S. Sensorial quality of dietetic soft serve ice cream prepared by using different proportions of maltodextrin. International Journal of Current Research and Academic Review, 2014; 2(6): 51-55.
[44] Gobbi J., Carvalho T. and Cristina, S. Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles, Food Science and Technology, 2016; 36(4): 664-671.