نانو ریزپوشانی فیکوسیانین استخراج شده از جلبک اسپیرولینا (Spirulina platensis) و استفاده از نانوذرات حاصل در فرمولاسیون بستنی

نویسندگان
1 استادیار، پژوهشکده اکولوژی دریای خزر، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، ساری، ایران
2 استاد، گروه مهندسی علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
3 دانش آموخته دکتری تخصصی، گروه فراوری محصولات شیلاتی، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
4 استادیار، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران، ایران
چکیده
با توجه به نگرانی­هایی که در زمینه استفاده از رنگ­های مصنوعی در مواد غذایی مختلف وجود دارد، توجه به منابع دارای رنگ­های طبیعی ضرورت می­یابد. یکی از این منابع، جلبک اسپیرولینا است که محتوی رنگدانه آبی فیکوسیانین است. هدف از تحقیق حاضر در مرحله اول استخراج این رنگدانه از جلبک مذکور به روش آنزیمی (لیزوزیم) و نانو ریزپوشانی آن بود. در مرحله دوم خصوصیات فیزیکوشیمیایی نانوذرات بررسی شدند. نهایتا فیکوسیانین در دو فرم آزاد و نانو به فرمولاسیون بستنی اضافه و خواص کیفی و حسی محصول در مقایسه با شاهد ارزیابی گردید. نتایج نشان داد نانو ذرات تولیدشده دارای میانگین سایز 1/397 نانومتر هستند. بازده فرایند ریزپوشانی 11/2±41/73 درصد ثبت شد. مطابق تصاویر ثبت­شده با استفاده از میکروسکوپ الکترونی روبشی، ذرات نانو ریزپوشانی­شده با ابعاد مختلف در گسترش میکروسکوپی پراکنده بودند؛ به طوری که ذرات در اندازه­های مختلف (از قطر 4/51 تا 2/221 نانومتر) قابل مشاهده می­باشند. نتایج رهایش نانوذرات در شرایط آزمایشگاهی نشان داد، در 2/1=pH، درصد رهایش فیکوسیانین پائین است (2 ساعت اول)؛ به طوری که در محدوه 7 تا 13 درصد نوسان دارد. اما بعد از این مرحله (4/7=pH)، درصد رهاسازی به طور قابل ملاحظه­ای افزایش داشت (4 ساعت دوم) و در زمان­های 3 و 4 ساعت به ترتیب از 35 به 71 درصد رسید. استفاده از فیکوسیانین خالص در فرمولاسیون بستنی، باعث بهبود شاخص­های سفتی، درصد ذوب، بافت، شدت صمغیت، شدت کریستالی و شدت سردی شد؛ اما این شاخص­ها در تیمار فرموله­شده با فیکوسیانین نانو ریزپوشانی­­شده در سطح مطلوب­تری گزارش شدند. شاخص رنگ در بستنی فرموله­شده با فیکوسیانین خالص در مقایسه با تیمار دارای فیکوسیانین نانو ریزپوشانی­شده مطلوب­تر و از مقبولیت بیشتری برخوردار بود. با توجه به ویژگی­های فیکوسیانین به ویژه فرم نانو ریزپوشانی­شده، می­توان از آن به عنوان رنگ بیولوژیک و بهبوددهنده خواص کیفی و حسی در انواع بستنی استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Nanoencapsulation of phycocyanin extracted from the alga Spirulina (Spirulina platensis) and use of nanoparticles in ice cream formulation

نویسندگان English

Reza Safari 1
Zeynab Raftani Amiri 2
Soheyl Reyhani Poul 3
Hadi Ghaffari 4
1 Assistant professor, Caspian Sea Ecology Research Institute, Fisheries Science Research Institute, Agricultural Education and Extension Research Organization, Sari, Iran
2 Professor, Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 PhD Graduated, Department of Processing of Fishery Products, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Assistant professor, Fisheries Science Research Institute, Agricultural Education and Extension Research Organization, Tehran, Iran
چکیده English

Due to the concerns about the use of artificial colors in various foods, it is necessary to pay attention to sources with natural colors. One of these sources is the algae Spirulina, which contains the blue pigment phycocyanin. The aim of the present study in the first stage was to extract this pigment from the algae by enzymatic method and its nanoencapsulation. In the second stage, the physicochemical properties of nanoparticles were investigated. Finally, phycocyanin in both free and nano forms was added to the ice cream formulation and the qualitative and sensory properties of the product were evaluated in comparison with the control. The results showed that the produced nanoparticles have an average size of 397.1 nm. The encapsulation efficiency of the process was recorded 73.41%. According to the images recorded using scanning electron microscopy, the nanoparticle with different dimensions are scattered in the microscopic spread so that the particles are visible in different sizes. The release results of nanoparticles in vitro showed that at pH=1.2, the release percentage of phycocyanin is low (the first 2 hours). So that it fluctuates in the range of 7 to 13%. But after this stage (pH=7.4), the release rate increased significantly and from 35 to 71% at 3 and 4 hours, respectively. The use of pure phycocyanin in ice cream formulation improved the hardness, melting percentage, texture, hardness, crystalline intensity and coldness. But these indices were reported at a more favorable level in the treatment formulated with nanoencapsulated phycocyanin. The color index in ice cream formulated with pure phycocyanin was more desirable and more acceptable compared to the treatment with nanoencapsulated phycocyanin. Due to the properties of phycocyanin, especially the nanoencapsulated form, it can be used as a biological dye and improver the quality and sensory properties in various ice creams.

کلیدواژه‌ها English

Spirulina
Phycocyanin
Nanoencapsulation
Ice cream
quality and sensory properties
[1] Rymbai, H., Sharma, R. R., and Srivastav, M. Bio-colorants and its implications in health and food industry–a review. International Journal of Pharmacological Research, 2011; 3(4): 2228-2244.
[2] Nuhu, A. A. Spirulina (Arthrospira): An important source of nutritional and medicinal compounds. Journal of Marine biology, 2013.
[3] Nagpal, N., Munjal, N., and Chatterjee, S. Microbial pigments with health benefits-a mini review. Trend in Biosciences, 2011; 4: 157-160.
[4] Nemoto-Kawamura, C., Hirahashi, T., Nagai, T., Yamada, H., Katoh, T., and Hayashi, O. Phycocyanin enhances secretary IgA antibody response and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. Journal of nutritional science and vitaminology, 2004; 50(2): 129-136.
[5] Romay, C. H., Gonzalez, R., Ledon, N., Remirez, D., and Rimbau, V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current protein and peptide science, 2003; 4(3): 207-216.
[6] Sonani, R. R., Singh, N. K., Kumar, J., Thakar, D., and Madamwar, D. Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: An antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochemistry, 2015; 49(10): 1757-1766.
[7] Martelli, G., Folli, C., Visai, L., Daglia, M., and Ferrari, D. Thermal stability improvement of blue colorant C-Phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, 2014; 49(1), 154-159.
[8] Jespersen, L., Strømdahl, L. D., Olsen, K., and Skibsted, L. H. Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 2005; 220(3), 261-266.
[9] Yan, M., Liu, B., Jiao, X., and Qin, S. Preparation of phycocyanin microcapsules and its properties. Food and bioproducts processing, 2014; 92(1), 89-97.
[10] Machado, A. R., Assis, L. M., Costa, J. A. V., Badiale-Furlong, E., Motta, A. S., Micheletto, Y. M. S., and Souza-Soares, L. A. Application of sonication and mixing for nanoencapsulation of the cyanobacterium Spirulina platensis in liposomes. International Food Research Journal, 2014; 21(6): 2201.
[11] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., and Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 2011; 1806-1815.
[12] Salehifar, M., Shahbazizadeh, S., Khosravi, K., Bahmadi, H., and Ferdowsi, R. Possibility of using microalgae Spirulina platensispowder in industrial production of Iranian traditional cookies. Iranian Journal of Nutrition Sciences & Food Technology, 2013; 7 (4): 63-72
[13] Agustini, T. W., Ma’ruf, W. F., & Wibowo, B. A. Study on the effect of different concentration of Spirulina platensis paste added into dried noodle to its quality characteristics. In IOP Conference Series: Earth and Environmental Science, 2017; (Vol. 55, No. 1, p. 012068). IOP Publishing.
[14] Kamble, S. P., Gaikar, R. B., Padalia, R. B., and Shinde, K. D. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. Journal of Applied Pharmaceutical Science, 2013; 3(8): 149-153
[15] Prabakaran, P., and Ravindran, A. D. Efficacy of different extraction methods of phycocyanin from Spirulina platensis. International Journal of Research in Pharmacy and Life Sciences, 2013; 1(1): 15-20.
[16] Murugan, T., and Rajesh, R. Cultivation of two species of Spirulina (Spirulina platensis and Spirulina platensis var lonar) on sea water medium and extraction of C-phycocyanin. European Journal of Experimental Biology, 2014; 4(2): 93-97.
[17] Leema, J. M., Kirubagaran, R., Vinithkumar, N. V., Dheenan, P. S., and Karthikayulu, S. High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresource technology, 2010; 101(23): 9221-9227.
[18] Patil, G., Chethana, S., Sridevi, A. S., and Raghavarao, K. S. M. S. Method to obtain C-phycocyanin of high purity. Journal of chromatography A, 2006; 1127(1-2): 76-81.
[19] Kumar, D. D., Mann, B., Pothuraju, R., Sharma, R., and Bajaj, R. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream. Food & function, 2016; 7(1): 417-424.
[20] Akalın, A. S., and Erişir, D. Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low‐fat probiotic ice cream. Journal of food science, 2008; 73(4): M184-M188.
[21] Mahdian, E., Karajian, R., and Sabri, S. The effect of milk fat replacement with inulin and milk protein concentrate on physicochemical and sensory properties of low fat ice cream. Journal of Innovation in Food Science and Technology, 2013; 5 (4): 21-29
[22] Amiri, Z., and Ahmadi, M. The possibility of substitution of carboxy methyl cellulose and tragacanth gum on the physical and sensory properties of ice cream. Journal of Food Research, 2014; 24 (2): 279-290
[23] Marshall R.T., and Arbuckle W.S. The science of Ice cream. 5thed. Torkashvand, Y. Eta. Tehran; 1996.
[24] Soukoulis, C., Chandrinos, I., and Tzia, C. Study of the functionality of selected hydrocolloids and their blends with κ-carrageenan on storage quality of vanilla ice cream. LWT-Food Science and Technology, 2008; 41(10), 1816-1827.
[25] Pon, S. Y., Lee, W. J., and Chong, G. H. Textural and rheological properties of stevia ice cream. International Food Research Journal, 2015; 22(4): 1544-1549.
[26] Hettiarachchi, C. A., and Illeperuma, D. C. K. Developing a trained sensory panel for comparison of different brands of vanilla ice cream using descriptive sensory analysis. Journal of the National Science Foundation of Sri Lanka, 2015; 43(1): 45-55.
[27] Saranraj, P., and Sivasakthi, S. Spirulina platensis–food for future: a review. Asian Journal of Pharmaceutical Science and Technology, 2014; 4(1), 26-33.
[28] Dewi, E. N., Purnamayati, L., and Kurniasih, R. A. Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Jurnal Teknologi, 2016; 78(4): 45–50.
[29] Dewi, E. N., Purnamayati, L., and Kurniasih, R. A. Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. In IOP Conference Series: Earth and Environmental Science (Vol. 55, No. 1, p. 012060), 2017; IOP Publishing.
[30] Holkem, A. T., Raddatz, G. C., Nunes, G. L., Cichoski, A. J., Jacob-Lopes, E., Grosso, C. R. F., and de Menezes, C. R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT-Food Science and Technology, 2016; 71: 302-308.
[31] Suzery, M., Majid, D., Setyawan, D., and Sutanto, H. Improvement of stability and antioxidant activities by using phycocyanin-chitosan encapsulation technique. In IOP Conference Series: Earth and Environmental Science (Vol. 55, No. 1, p. 012052), 2017; IOP Publishing.
[32] Rasouli, F., Berenji, sh., and Shahab, A. Optimization of traditional Iranian ice cream formulation containing spirulina microalgae using response surface methodology, Journal of Food Technology and Nutrition, 2017; 4 (3): 18-28
[33] Kerdchouay, P., and Surapat, S. Effect of skimmed milk substitution by whey protein concentrate in low-fat coconut milk ice cream. Journal of Food Process Technology, 2012; 16(2): 25-34.
[34] Gohari, A., Habibi, M., and Hadad, M. Effect of date syrup as a substitute for sugar on the physicochemical and sensory properties of soft ice cream. Iranian Food Science and Technology Research Journal, 2005; 1 (2): 23-32
[35] Eslami, A., Fadai, V., Khosravi, K., and Mazinani, S. The effect of powdered Spirulina platensis biomass on some physicochemical and sensory properties of probiotic doogh containing powdered mint. Innovative Food Technologies, 2015; 5 (2): 59-70
[36] Bolliger, S., Wildmoser, H., Goff, H. D., and Tharp, B. W. Relationships between ice cream mix viscoelasticity and ice crystal growth in ice cream. International Dairy Journal, 2000; 10(11), 791-797.
[37] Bahramparvar, M., Hadad, M., and Razavi, M. Effect of selected stabilizers on physicochemical and sensory properties of ice cream. Journal of Food Processing and Production, 2011; 1 (1): 4-14
[38] Amiri, S., Alami, M., Rezai, R., Dadpour, M., and Khamiri, M. Effect of isfarzeh and basil seed mucilages on physicochemical rheological and sensory properties of ice cream. Journal of Research and Innovation in Food Science and Technology, 2012; 1 (1): 23-36
[39] Milani, E., and Koocheki, A. The effects of date syrup and guar gum on physical, rheological and sensory properties of low fat frozen yoghurt dessert. International Journal of Dairy Technology, 2011; 64(1): 121-129.
[40] Muse, M. R., and Hartel, R. W. Ice cream structural elements that affect melting rate and hardness. Journal of dairy science, 2004; 87(1): 1-10.
[41] El-Zeini, H. M., El-Abd, M. M., Mostafa, A. Z., and El-Ghany, F. H. Y. Effect of incorporating whey protein concentrate on chemical, rheological and textural properties of ice cream. Journal of Food Processing and Technology, 2016; 7(2): 1-7
[42] Pandiyan, C., Villi, R. A., Kumaresan, G., and Elango, G. R. A. Effect of incorporation of whey protein concentrate on quality of ice cream. Tamilnadu Journal of Veterinary and Animal Sciences, 2012; 8(4), 189-193.
[43] Sonwane, R. S., and Hembade, A. S. Sensorial quality of dietetic soft serve ice cream prepared by using different proportions of maltodextrin. International Journal of Current Research and Academic Review, 2014; 2(6): 51-55.
[44] Gobbi J., Carvalho T. and Cristina, S. Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles, Food Science and Technology, 2016; 36(4): 664-671.