تاثیر استفاده از کیتوزان و β- سیکلو دکسترین بر حذف فلزات سنگین و ثبات اکسیداسیونی در گوشت چرخ‌شده ماهی شیر (Scomberomorus commerson) طی نگهداری در یخچال

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
2 دانشیار دانشکده علوم و صنایع غذایی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 دانشیار دانشکده علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 دانشیار گروه نانوتکنولوژی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
محصولات دریایی دارای ترکیباتی نظیر اسیدهای چرب امگا 3، ویتامین‌های محلول در چربی، پروتئین‌های قابل هضم و ریز مغذی‌هایی نظیر فلوئور، کلسیم، ید، مس، آهن و روی هستند. از این‌رو ارائه روش‌هایی جهت افزایش ماندگاری و نیز حذف فلزات سنگین از گوشت ماهی دارای اهمیت است. در این پژوهش، با استفاده از بیوپلیمرهای کیتوزان (CS) و بتا سیکلودکسترین (β-CD) ثبات اکسیداسیونی گوشت چرخ‌شده ماهی شیر طی 12 روز نگهداری در دمای یخچال با ارزیابی‌های شیمیایی (میزان اسیدیته (pH)، عدد پراکسید (PV)، و تیوباربیتوریک اسید (TBA)، ظرفیت نگهداری آب (WHC)) و میکروبی (شمارش بار میکروبی کل (TVC)) هر 3 روز یکبار مورد مطالعه قرار گرفت. همچنین توانایی این دو ترکیب در کاهش غلظت فلزات سنگین طی نگهداری در یخچال مورد بررسی قرار گرفت. طبق نتایج بدست آمده، استفاده از CS و β-CD بر روی مقادیر تمامی شاخص‌ها در مقایسه با تیمار شاهد تاثیر معنی‌داری داشت (05/0>P). بنابراین می‌توان گفت استفاده از CS و β-CD در کاهش اکسیداسیون و رشد باکتری‌های گوشت چرخ‌شده طی نگهداری در یخچال موثر است. کمترین میزان pH در تیمارهای T8 و T11، کمترین میزان PV در تیمارهای T8، T10 و T11، کمترین میزان TBA در تیمار T7، بیشترین میزان WHC در تیمار T8 و کمترین میزان TVC در تیمارهای T8 و T11 مشاهده شد. همچنین استفاده از محلول‌های CS و β-CD منجر به کاهش غلظت فلزات سنگین موجود در گوشت چرخ‌شده ماهی شیر شد، بطوریکه تیمار T8 بهترین عملکرد را در کاهش کادمیوم، سرب و جیوه از خود نشان داد و در برابرحذف نیکل، تیمارهای مختلف تقریبا عملکرد یکسانی داشتند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of using chitosan and β-cyclodextrin on removal of heavy metals and oxidation stability in minced meat of Scomberomorus commerson during refrigeration

نویسندگان English

Zahra Pishgahi 1
Rezvan Mousavi Nadushan 2
Peyman Mahasti Shotorbani 3
Behafarid Ghalandari 4
1 PhD student, Department of food science and technology, Tehran North Branch, Islamic Azad University, Tehran, Iran
2 Department of food science and technology, Tehran North Branch, Islamic Azad University, Tehran, Iran.
3 Department of Food Quality Control and Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده English

Seafood contains compounds such as omega-3 fatty acids, fat-soluble vitamins, digestible proteins and micronutrients such as fluorine, calcium, iodine, copper, iron and zinc. Therefore, it is important to provide methods to increase the shelf life and also remove heavy metals from fish meat. In this study, using the biopolymers of chitosan (CS) and beta-cyclodextrin (β-CD), the oxidative stability of minced of commerson Scomberomorus fish during 12 days of refrigeration with chemical evaluations (acidity (pH), peroxide number (PV), and Thiobarbituric acid (TBA), water holding capacity (WHC)) and microbial (total microbial load count (TVC)) were studied. The ability of these two compounds to reduce the concentration of heavy metals during refrigeration was also investigated. According to the results, the use of CS and β-CD had a significant effect on the values ​​of all indicators compared to the control treatment (P <0.05). Therefore, it can be said that the use of CS and β-CD is effective in reducing the oxidation and growth of minced meat bacteria during storage in the refrigerator. The lowest pH value was observed in T8 and T11 treatments, the lowest PV value was observed in T8, T10 and T11 treatments, the lowest TBA value was observed in T7 treatment, the highest WHC value was observed in T8 treatment and the lowest TVC value was observed in T8 and T11 treatments. The use of CS and β-CD solutions also reduced the concentration of heavy metals in the minced meat of commerson Scomberomorus, so that T8 treatment showed the best performance in reducing cadmium, lead and mercury and against nickel removal, different treatments had almost the same performance.

کلیدواژه‌ها English

Scomberomorus commerson
Chitosan
Beta-cyclodextrin
Minced meat of fish
1. Salehi, H. 2006. An analysis of the consumer market for carp and carp products in Iran. Iranian journal of fisheries sciences, 5, 83-110.
2. Lankarani, K. B., Alavian, S. M. & Peymani, P. 2013. Health in the Islamic Republic of Iran, challenges and progresses. Medical journal of the Islamic Republic of Iran, 27, 42.
3. Cardoso, C., Lourenço, H., Costa, S., Gonçalves, S. & Nunes, M. L. 2013. Survey into the seafood consumption preferences and patterns in the Portuguese population. Gender and regional variability. Appetite, 64, 20-31.
4. Adeli, A. 2008. Principles of marketing and aquatics packaging. Binahayat publishing.
5. Mashroofeh, A., Bakhtiari, A. R., Pourkazemi, M. & Rasouli, S. 2013. Bioaccumulation of Cd, Pb and Zn in the edible and inedible tissues of three sturgeon species in the Iranian coastline of the Caspian Sea. Chemosphere, 90, 573-580.
6. Najm, M., Shokrzadeh, M., Fakhar, M., Sharif, M., Hosseini, S. M., Rahimiesboei, B. & Habibi, F. 2014. Concentration of heavy metals (Cd, Cr and Pb) in the tissues of Clupeonella cultriventris and Gasterosteus aculeatus from Babolsar coastal waters of Mazandaran Province, Caspian Sea. Journal of Mazandaran University of Medical Sciences, 24, 185-192.
7. Rokni, N. 1999. Principle of the Food health. Tehran: Tehran University Press.
8. Medina, I., Gallardo, J. M. & Aubourg, S. P. 2009. Quality preservation in chilled and frozen fish products by employment of slurry ice and natural antioxidants. International journal of food science & technology, 44, 1467-1479.
9. Ruberto, G. & Baratta, M. T. 2000. Antioxidant activity of selected essential oil components in two lipid model systems. Food chemistry, 69, 167-174.
10. Velioglu, Y., Mazza, G., Gao, L. & Oomah, B. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 46, 4113-4117.
11. Moosavi, S. M., Zakipour Rahimabadi, E. & Aein Jamshid, K. 2017. The effect of Sole mince washing by chitosan solution on heavy
metals removal and oxidation stability during refrigerator storage. Journal of Food Science and Technology, 14, 178-169.
12. Rezaabad, M. K., Khodanazary, A. & Hosseini, S. M. 2019. The effect of film and coating of chitosan with vacuum packaging on quality characteristics of Spangled emperor (Lethrinus nebulousus) fillets stored at 4 ºC. Iranian Food Science and Technology Research, 15, 597-611.
13. Piedrahíta Márquez, D. G., Fuenmayor, C. A. & Suarez Mahecha, H. 2019. Effect of chitosan‐propolis edible coatings on stability of refrigerated cachama (Piaractus brachypomus) vacuum‐packed fish fillets. Packaging Technology and Science, 32, 143-153.
14. Milani, M. A., Dana, M. G., Ghanbarzadeh, B., Alizadeh, A. & Afshar, P. G. 2020. Effect of Gelatin/Hydroxypropyl-β-Cyclodextrin Bioactive Edible Coating Containing Nanoemulsion of Nettle Essential Oil on the Shelf Life of Turkey Meat. Journal of Food Technology and Nutrition, 17, 19-36.
15. Upadhyay, U., Sreedhar, I., Singh, S. A., Patel, C. M. & Anitha, K. 2021. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydrate Polymers, 251, 117000.
16. Liu, Q., Zhou, Y., Lu, J. & Zhou, Y. 2020. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere, 241, 125043.
17. Chawla, S., Kanatt, S. & Sharma, A. 2014. Chitosan, Polysaccharides. Springer International Publishing, 1-24.
18. Korma, S. A. 2016. Production, Application of. Lipids, 2, 5-10.
19. Del Valle, E. M. 2004. Cyclodextrins and their uses: a review. Process biochemistry, 39, 1033-1046.
20. Abedi, E., Zolgharnein, H., Salari, M. & Qasemi, A. 2012. Genetic differentiation of narrow-barred Spanish mackerel (Scomberomorus commerson) stocks using microsatellite markers in Persian Gulf. American-Eurasian Journal of Agricultural & Environmental Sciences, 12, 1305-1310.
21. Chemists, A. O. O. A. & Horwitz, W. 1975. Official methods of analysis, Association of Official Analytical Chemists Washington, DC.
22. Egan, H. kirk RS, Sawyer R (1981). Chemical Analysis of Food. Churchill Livingstone, Edinburgh.
23. Ojagh, S. M., Rezaei, M., Razavi, S. H. & Hosseini, S. M. H. 2010. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food chemistry, 120, 193-198.
24. Postawa, A. 2012. Best Practice Guide on Sampling and Monitoring of Metals in Drinking Water, Iwa Publishing.
25. Mohammad Zadeh, B. & Rezaei, M. 2013. Effect of polyphenoles green tea on microbial and chemical change rainbow trout (Oncorhynchus Mykiss) during storage ice. IRANIAN JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 10, 1-9.
26. Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y. & Chi, Y. 2009. Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food chemistry, 115, 66-70.
27. Duan, J., Jiang, Y., Cherian, G. & Zhao, Y. 2010. Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food chemistry, 122, 1035-1042.
28. W¹sowicz, E., Gramza, A., Hêœ, M., Jeleñ, H. H., Korczak, J., Ma³ecka, M., Mildner-Szkudlarz, S., Rudziñska, M., Samotyja, U. & Zawirska-Wojtasiak, R. 2004. Oxidation of lipids in food. Pol J Food Nutr Sci, 13, 87-100.
29. Jeon, Y.-J., Kamil, J. Y. & Shahidi, F. 2002. Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. Journal of agricultural and food chemistry, 50, 5167-5178.
30. Hassanzadeh, P., Tajik, H. & Rohani, M. R. 1390. Application of chitosan edible coating containing grape seed extract on the quality and shelf life of refrigerated chicken meat. Journal of Food Research (AGRICULTURAL SCIENC), 21, 465-460.
31. Sallam, K. I. 2007. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food control, 18, 566-575.
32. Mexis, S., Chouliara, E. & Kontominas, M. 2009. Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 C. Food microbiology, 26, 598-605.
33. Cadun, A., Cakli, S. & Kisla, D. 2005. A study of marination of deepwater pink shrimp (Parapenaeus longirostris, Lucas, 1846) and its shelf life. Food Chemistry, 90, 53-59.
34. Mohan, C., Ravishankar, C., Lalitha, K. & Gopal, T. S. 2012. Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids, 26, 167-174.
35. Chamanara, V., Shabanpour, B., Khomeiri, M. & Gorgin, S. 2013. Shelf-life extension of fish samples by using enriched chitosan coating with thyme essential oil. Journal of Aquatic Food Product Technology, 22, 3-10.
36. Miranda, J. C. D., Martins, T. E. A., Veiga, F. & Ferraz, H. G. 2011. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. Brazilian journal of pharmaceutical sciences, 47, 665-681.
37. Koutsoumanis, K., Lampropoulou, K. & Nychas, G.-J. E. 1999. Biogenic amines and sensory changes associated with the microbial flora of Mediterranean gilt-head sea bream (Sparus aurata) stored aerobically at 0, 8, and 15 C. Journal of food protection, 62, 398-402.
38. Goy, R. C., Britto, D. D. & Assis, O. B. 2009. A review of the antimicrobial activity of chitosan. Polímeros, 19, 241-247.
39. Clarkson, T. W. 1993. Mercury: major issues in environmental health. Environmental Health Perspectives, 100, 31-38.
40. Kavitha, E., Rajesh, M. & Prabhakar, S. 2018. Removal and recovery of heavy metals from aqueous solution using β-cyclodextrin polymer and optimization of complexation conditions. Health, 6, 7.
41. Organization, W. H. 1993. Guidelines for drinking-water quality, World Health Organization.
42. aNanseu-Njiki, C. P., Tchamango, S. R., Ngom, P. C., Darchen, A. & Ngameni, E. 2009. Mercury (II) removal from water by electrocoagulation using aluminium and iron electrodes. Journal of Hazardous Materials, 168, 1430-1436; bTuzen, M., Karaman, I., Citak, D. & Soylak, M. 2009. Mercury (II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination. Food and Chemical Toxicology, 47, 1648-1652.
43. Haimhoffer, Á., Rusznyák, Á., Réti-Nagy, K., Vasvári, G., Váradi, J., Vecsernyés, M., Bácskay, I., Fehér, P., Ujhelyi, Z. & Fenyvesi, F. 2019. Cyclodextrins in drug delivery systems and their effects on biological barriers. Scientia Pharmaceutica, 87, 33.