تاثیر اسمز و پیش تیمارهای آنزیم بری و فراصوت بر خروج ترکیبات موثره از گیاه دارویی آویشن

نویسندگان
استادیار پژوهش، بخش تحقیقات فنی و مهندسی کشاورزی مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی مشهد
چکیده
در این پژوهش با استفاده از گیاه دارویی آویشن بدون استفاده از حرارت به روش اسمزی، محلول قندی با حداکثر ترکیبات موثره تولید شد. اثرات دما (25، 35 و 45 درجه سلسیوس)، غلظت محلول اسمزی ساکارز (40، 50 و 60 درصد) و زمان نمونه­برداری (15، 30، 60، 90، 120، 180، 240 و 360 دقیقه)، بر میزان خروج مواد موثره از گیاه و ایجاد تغییر در مقادیر pH و ضریب هدایت­الکتریکی (EC) مطالعه شدند. سپس تاثیر پیش­تیمارهای آنزیم­زدایی با آب­گرم (30، 60، 120 و 180 ثانیه) و فراصوت در (صفر، 15 و30 دقیقه) بر فرآیند اسمزی به صورت مجزا بررسی شدند. بیشترین EC مربوط به محلول اسمزی با غلظت 40 درصد ساکارز و دمای 45 درجه سلسیوس و کمترین آن متعلق به محلول اسمزی با غلظت 60 درصد و دمای 45 درجه سلسیوس بود. انجام فرایند آنزیم­زدایی قبل از اسمز منجر به افزایش پارامتر‌های pH و EC گردید. آنزیم­زدایی 30 ثانیه، بیشترین افزایش را بر EC داشت. فرآصوت باعث افزایش مقادیرpH و EC در نمونه‌های تیمار شده با 30 دقیقه فراصوت نسبت به 15 دقیقه بود. مقایسه نتایج کروماتوگرافی نمونه‌های شاهد و نمونه حاوی عصاره گیاه آویشن در محلول ساکارز، نشان‌دهنده خروج مواد موثره قطبی و غیر‌قطبی در محلول اسمزی به طور هم­زمان بود. خروج ترکیبات مختلف در طول زمان نشان‌دهنده تفاوت در سرعت خروج آنها در طی فرآیند اسمز بود. جمع بندی نتایج نشان می‌دهد که استخراج مواد موثره گیاهان دارویی با فرآیند اسمز امکان­پذیر بوده به طوری که،pH و EC را در طول زمان تغییر می­دهد. محصول این روش می تواند در تولید شربت های نوشیدنی و مواد غذایی مورد استفاده قرار گیرد. در این روش آسیب‌های سایر روش های استخراج مواد موثره مانند استخراج با حلال، استفاده از حرارت در استخراج و خشک کردن گیاهان دارویی و همچنین روش های تقطیر و اسانس گیری به حداقل می رسد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of osmosis and blanching and ultrasound pretreatments on extraction of effective compounds from Thyme

نویسندگان English

SHADI Basiri
Farzad Gheybi
Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research Center, AREEO, Mashhad, Iran
چکیده English

In this study, using thyme medicinal plant without using heat by osmotic method, sugar solution with maximum active ingredients was produced. Effects of temperature (25, 35 and 45 degrees Celsius), sucrose osmotic solution concentration (40, 50 and 60%) and sampling time (15, 30, 60, 90, 120, 180, 240 and 360 minutes) on the amount The removal of active ingredients from the plant and the change in pH values and electrical conductivity (EC) were evaluated. Then the effect of blanching with hot water in (30, 60, 120 and 180 seconds) and ultrasound (0, 15 and 30 minutes) on the osmotic processing were investigated separately. The highest EC was in the solution with 40% sucrose concentration and 45°C and the lowest was in osmotic solution with 60% concentration and 45°C. Blanching before osmosis resulted in increased pH and EC. Blanching for 30 seconds caused the greatest increase in EC. Treatment with 30 minutes ultrasound increased the pH and EC in samples compared to 15 minutes of ultrasound. The chromatographic results of the control samples and the sample containing thyme extract in sucrose solution showed the release of polar and non-polar active compounds in the osmotic solution. The release of different compounds showed a difference in their release rate during the osmosis process. Finally the results showed that the extraction of active ingredients of medicinal plants was possible by osmosis process, so that the pH and EC changed over time. The product of this research can be used in the production of beverage syrups and food. In this method, the damages of other methods of extraction of effective substances such as solvent extraction, use of heat in extraction and drying of medicinal plants such as distillation and essential oil extraction methods are minimized.

کلیدواژه‌ها English

Thyme
Extraction
Effective Compounds
Blanching
Electrical conductivity
[1] Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8: 303-313.
[2] Srivastava, S. K., Singh, N. K. (2020). General overview of medicinal and aromatic plants: A review. Journal of Medicinal Plants Studies, 8 (5): 91-93.
[3] Hashemi Gahruie, H., Eskandari, M. H., Mesbahi, G., Hanifpour, M. A. (2015). Scientific and technical aspects of yogurt fortification: A review. Food Science and Human Wellness, 4 (1): 1–8.
[4] Hashemi Gahruie, H., Hosseini, S. M. H., Taghavifard, M. H., Eskandari, M. H., Golmakani, M.-T., Shad, E. (2017). Lipid oxidation, color changes, and microbiological quality of frozen beef burgers incorporated with Shirazi thyme, cinnamon, and rosemary extracts. Journal of Food Quality, 1–9.
[5] Nieto, G. (2020). A Review on Applications and Uses of Thymus in the Food Industry. Plants (Basel), 9 (8): 961.
[6] Yazdani, D., Shahnazi, S., Jamshidi, A., Rezazadeh, S., Mojab, F. (2006). Study on variation of essential oil quality and quantity in dry and fresh herb of Thyme and Tarragon. Journal of Medicinal Plants, 5 (17): 7-15.
[7] Naghdi badi, H., Makkizadeh, M. (2003). Review of common thyme. Journal of Medicinal Plants, 7: 1 -13.
[8] Baser, K. H. C. (2002). Aromatic biodiversity among the flowering plant taxa of Turkey. Pure App. Chem, 74: 527-545.
[9] Samsam shariat, H. (2007). Extraction of active compounds of medicinal plants and methods of their identification and evaluation.
[10] Bahmania , L., Aboonajmia, M., Arabhosseinia A., Mirsaeedghazi, H. (2018). Effects of ultrasound pre-treatment on quantity and quality of essential oil of tarragon (Artemisia dracunculus L.) leaves. Journal of Applied Research on Medicinal and Aromatic Plants,8: 47-52.
[11] Wang, L., Weller, C. L. 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Science and Technology, 17: 300-312.
[12] Chandra, S., Kumari, D. (2015). Recent development in osmotic dehydration of fruit and vegetables: A review Critical Reviews. Food Science and Nutrition, 55: 552–561.
[13] Alzamora, S. M., Salvatori, D., Tapia, S. M., López-Malo, A., WeltiChanes, J., Fito, P. (2005). Novel Functional Foods from Vegetable Matrices Impregnated with Biologically Active Compounds. Journal of Food Engineering, 67 (1): 205-214.
[14] Shahidi, F., Maleki, M. (2019). Evaluation of increase in turnip phenolic compounds in osmotic solution containing sour tea extract and investigation of its drying kinetics with hot air. Journal of science and food industries, 88 (16): 231-242. [In Persian].
[15] Shahbazi, H., Hashemi Gahruie, H., Golmakani, M. T., Eskandari, M. H., Movahedi, M. (2018). Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Science and Nutrition published, 6: 2568–2577.
[16] Azar Pazhooh, E., Sharayeei, P., Azimi, N., Gheybi, F. (2020). Effect of Grape Phenolic Impregnation by Osmotic Treatment on Quantities and Qualities of Aloe -Vera Gel. Journal of Innovation in Food Science and Technology, 12 (1): 145-156.
[17] Shahidi, F., Mohebbi, M., Noshad, M., Ehtiati, A., Fathi, M. (2012). The effect of osmosis and ultrasound pretreatments on some quality characteristics of hot air dried bananas. Iranian Food Science and Technology Research Journal, 7 (4): 263-272.
[18] İspir, A., Toğrul, İ. T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87 (2): 166-180.
[19] Rózek, A., García-Pérez, J. V., López, F., Güell, C., Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99 (2): 142-150.
[20] Iyasele, J. U, David, J., Idiata, D. (2015). Investigation of the Relationship betweenElectrical Conductivity and Total DissolvedSolids for Mono-Valent, Di-Valent and Tri-Valent Metal Compounds. International Journal of Engineering Research and Reviews, 3(1): 40-48.
[21] Sandeep, D. B.(2004). Effect of ohmic heating on color, rehydration and textural characteristics of fresh carrot cubes. Louisiana State University, India.
[22] Fasogbon, B. M, Gbadamosi, S. O., Taiwo, K. A. (2013). Studies on the osmotic dehydration and rehydration characteristics of pineapple slices. Food Process Technol, 4 (4): 8 pages.
[23] Basiri, S. (2015). Evaluation of antioxidant and antiradical properties of Pomegranate (Punica granatum L.) seed and defatted seed extracts. Journal of Food Sci Technol, 52 (2):1117–1123.
[24] Kowalska, H., Lenart, A., Leszczyk, D. (2008). The effect of blanching and freezing on osmotic dehydration of pumpkin. Journal of food engineering, 86 (1): 30-38.
[25] Soria, A. C., Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Food Science and Technology, 21: 323-331.
[26] Fuente-Blanco, S. d. l., Sarabia, E. R.-F. d., Acosta-Aparicio, V. M., Blanco-Blanco, A., Gallego-Juarez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44: e523-e527.
[27] Sun, W. D. (2005). Emerging technology for food processing. Chapter 13, 338-339.
[28] Martino, E., Ramaiola, I., Urbano, M. (2006). Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas Alternative to Soxhlet and ultrasound-assisted extraction. J. Chromatograph. A, 1125, 147-151.
[29] Jimenez, A., Beltran, G. (2007). High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrasonics Sonochemistry, 14(6): 725-731
[30] Basiri, S., Shahidi, F., Kadkhodaie, R., Farhoosh, R. (2013). Evaluation on effects of ultrasound waves and preprocessing procedures on oil extraction from pomegranate seed. Journal of food science, 8 (31): 115-121.
[31] Li, H., Pordesimo, L. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food research international, 37 (7): 731-738.