اثر پکتین بر خصوصیات ضد دیابتی و آنتی اکسیدانی شیرهای تخمیر شده توسط باکتری‌های اسید لاکتیک جدا شده از فرآورده‌های لبنی سنتی ایران

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده داروسازی، علوم پزشکی تهران، دانشگاه آزاد اسلامی، تهران، ایران
2 استاد پژوهشکده زیست فناوری، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران
3 استادیار گروه علوم و صنایع غذایی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
4 استاد مرکز تحقیقات آزمایشگاهی غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران
5 استادیار دانشگاه علوم پزشکی آزاد اسلامی تهران، دانشکده علوم نوین، گروه بیوشیمی-بیوفیزیک، تهران، ایران
چکیده
امروزه پلی‌ساکاریدها جهت بهبود ویژگی‌های تغذیه‌ای و فیزیکوشیمیایی محصول به فرآورده‌های لبنی اضافه می‌شوند. به دلیل ارتباط میان دیابت با استرس اکسیداتیو، شناسایی ترکیبات طبیعی مانند پلی‌ساکاریدها با خاصیت ضد دیابتی و آنتی‌اکسیدانی اهمیت یافته است. لذا مطالعه حاضر با هدف ارزیابی اثر پکتین بر فعالیت ضد دیابتی و آنتی‌اکسیدانی شیرهای تخمیر شده توسط باکتری‌های اسید لاکتیک (LAB) جدا شده از فرآورده‌های لبنی سنتی ایران انجام شد. پس از تخمیر شیر توسط سویه‌های لاکتوباسیلوس هلوتیکوس و لاکتوباسیلوس پاراکازئی، پکتین (%1) به نمونه‌ها اضافه شد و فعالیت ضد دیابتی با مهار آنزیم آلفا آمیلاز و آلفا گلوکوزیداز بررسی گردید. فعالیت آنتی‌ اکسیدانی با مهار رادیکال‌های 2 و2-دی فنیل1-پیکریل هیدازیل((DPPH، 1و2-آزینوبیس-4-بنزوتیازولین-6-سولفونیک اسید (ABTS) و هیدروکسیل اندازه‌گیری شد. نمونه‌ها شامل محلول پکتین (5/3-5/0 میلی‌گرم/میلی‌لیتر و10-5/0 میلی‌گرم/میلی‌لیتر به ترتیب برای ارزیابی فعالیت ضد دیابتی و آنتی‌ اکسیدانی)، سرم شیر تخمیری و غیرتخمیری با پکتین (1%) و بدون پکتین بودند. نتایج بیانگر نقش پکتین در مهار آنزیم آلفا گلوکوزیداز (38/2= IC50 میلی‌گرم/ میلی‌لیتر) و فعالیت مهارکنندگی رادیکال‌های DPPH (57/44%)، ABTS (07/28%) و هیدروکسیل (85/38%) در غلظت 10 میلی‌گرم در میلی‌لیتر بود (05/0P<). با افزودن پکتین به نمونه سرم شیر غیرتخمیری خاصیت آنتی اکسیدانی افزایش یافت و بیشترین میزان افزایش مربوط به فعالیت مهار رادیکال‌های آزاد DPPH (%35) بود. همچنین افزودن پکتین به سرم شیر تخمیر شده توسط سویه لاکتوباسیلوس هلوتیکوس باعث افزایش معنی‌دار مهار فعالیت آنزیم آلفا گلوکوزیداز (29%)، مهار رادیکال‌های آزاد DPPH (26/%41)، ABTS (5/%2) و هیدروکسیل (64/%7) شد (05/0P<). نتایج نشان دادند پکتین دارای پتانسیل کاربرد در فرمولاسیون محصولات غذایی فراسودمند به دلیل توانایی بهبود خاصیت آنتی اکسیدانی و ضد دیابتی محصولات شیر تخمیری می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Pectin on Anti-diabetic and Anti-oxidant Properties of Fermented Milk by Lactic Acid Bacteria Isolated from Traditional Iranian Dairy Products

نویسندگان English

Faezeh shirkhan 1
Saeed Mirdamadi 2
Mahta Mahta Mirzaei 3
Behrouz Akbari-Adergani 4
Nikoo Nasoohi 5
1 Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sience, Islamic Azad Univercity,Tehran, Iran
2 Professor, Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
3 Assistant Professor, Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
4 Professor of Food and Drug Laboratory Research Center, Food and Drug administration, Ministry of Health and Medical Education
5 Assistant Professor, Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
چکیده English







Abstract

Nowadays, Polysaccharides are used to improve the nutritional and physicochemical properties of dairy products. The identification of natural compounds such as polysaccharides with antidiabetic and antioxidant properties has become important due to the relationship between diabetes and oxidative stress. Therefore, the present study aimed to evaluate the influence of pectin on the antidiabetic and antioxidant activity of milk fermented by lactic acid bacteria (LAB) isolated from traditional Iranian dairy products. Pectin (1%) was added to the samples following milk fermentation by Lactobacillus helveticus and Lactobacillus para-casei strains, and antidiabetic activity was assessed by considering the inhibitory effects on α-amylase and α-glucosidase. The antioxidant activity was determined by evaluating inhibition of 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and hydroxyl radicals. Samples included pectin solution (0.5-3.5 mg/ml and 0.5-10 mg/ml for evaluation of anti-diabetic and antioxidant activity, respectively), whey of fermented and non-fermented milk with (1%) and without pectin. The results indicated the role of pectin on inhibition of α-glucosidase enzyme activity (IC50=2.38 mg/ml), as well as scavenging the DPPH (44.57%), ABTS (28.7%), and Hydroxyl (38.85%) radicals (P<0.05) a concentration of 10 mg/ml. Pectin added to the whey of non-fermented milk sample boosted antioxidant properties and the maximum rate of free radical scavenging activity (35%) was obtained for DPPH radicals. Furthermore, adding pectin to the whey of milk fermented with Lactobacillus helveticus strain improved the activity of the product on inhibition of α-glucosidase enzyme (29%), scavenging of DPPH (41.26 %), ABTS (2.5%), and hydroxyl radicals (7.64%) (P<0.05). The results indicated the potential of pectin to be used in the formulation of beneficial food products due to its ability to improve the antioxidant and anti-diabetic properties of fermented milk products.

کلیدواژه‌ها English

Type 2 diabetes
Pectin
lactic acid bacteria
Polysaccharide
Antioxidant activity
Functional product
[1] Jakobsdottir, G., Nyman, M., & Fåk, F. 2014. Designing future prebiotic fiber to target metabolic syndrome. Nutrition, 30(5), 497-502.
[2] Moodley, K., Joseph, K., Naidoo, Y., Islam, S., & Mackraj, I. 2015. Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea Harv.(wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complementary and Alternative Medicine, 15(1), 1-13.
[3] Mwakalukwa, R., Amen, Y., Nagata, M., & Shimizu, K. 2020. Postprandial hyperglycemia lowering effect of the isolated compounds from olive mill Wastes–an inhibitory activity and kinetics studies on α-glucosidase and α-amylase enzymes. ACS Omega, 5(32), 20070-20079.
[4] Kaczmarczyk, M. M., Miller, M. J., & Freund, G. G. 2012. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 61(8), 1058-1066.
[5] Ciriminna, R., Fidalgo, A., Delisi, R., Ilharco, L. M., & Pagliaro, M. 2016. Pectin production and global market. Agro Food Industry Hi-Tech, 27 (5), 17-20.
[6] Zhi, Z., Chen, J., Li, S., Wang, W., Huang, R., Liu, D., Ding, T., Linhardt, R.J., Chen, Sh & Ye, X. 2017. preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated fenton process. Scientific Reports, 7(1), 1-11.
[7] Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., & Gani, A. 2017. Emerging concepts in the nutraceutical and functional properties of pectin-A review. Carbohydrate Polymers, 168, 227-239.
[8] Wu, D., Ye, X., Linhardt, R. J., Liu, X., Zhu, K., Yu, C., Ding, T., Liu, D., He, Q. & Chen, S. 2021. Dietary pectic substances enhance gut health by its polycomponent: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 2015-2039.
[9] Koksoy, A., & Kilic, M. 2004. Use of hydrocolloids in textural stabilization of a yoghurt drink, ayran. Food Hydrocolloids, 18(4), 593-600.
[10] Sun, L., Warren, F. J., & Gidley, M. J. 2018. Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase. Food Hydrocolloids, 79, 63-70.
[11] Ahmadi Gavlighi, H., Tabarsa, M., & Ghaderi Ghahfarokhi, M. 2021. Antioxidant, α-amylase and α-glucosidase inhibition properties of polysaccharide from pomegranate peel via enzymatic and acidic approach. Food Science and Technology, 18 (117), 145-153.
[12] Lin, M. Y., & Yen, C. L. 1999. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460-1466.
[13] Li, Y., Wang, X., Meng, Y., Zhang, F., Shao, Z., & Hu, L. 2018. Effect of the modified high methoxyl pectin on the stability of the fermented milk beverage. International Journal of Food Properties, 21(1), 2075-2086.
[14] Ferdowsifard, M., Fazeli, M., Samadi, N., & Jamalifar, H. 2011. The stability of fermented and non-Fermented probiotic milk produced by three species of autochthonous Lactobacillus. Journal of Food Science and Nutrition, 8(4),13-20.
[15] Soleymanzadeh, N., Mirdamadi, S., & Kianirad, M. 2016. Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science & Technology, 96(4), 443-457.
[16] Demain, AL., Solomon NA. 1986. Manual of industrial microbiology and biotechnology. United States of America, American Society for Microbiology, 59-60.
[17] Ayyash, M., Al-Nuaimi, A. K., Al-Mahadin, S., & Liu, S. Q. 2018. In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chemistry, 239, 588-597.
[18] Son, S., & Lewis, B. A. 2002. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: Structure− activity relationship. Journal of Agricultural and Food Chemistry, 50(3), 468-472.
[19] Mukherjee, S., Pawar, N., Kulkarni, O., Nagarkar, B., Thopte, S., Bhujbal, A., & Pawar, P. 2011. Evaluation of free-radical quenching properties of standard Ayurvedic formulation Vayasthapana Rasayana. BMC Complementary and Alternative Medicine, 11(1), 1-6.
[20] Chi, C. F., Hu, F. Y., Wang, B., Li, T., & Ding, G. F. 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, 301-313.
[21] Malunga, L. N., & Izydorczyk, M. 2017. Antiglycemic effect of water extractable arabinoxylan from wheat aleurone and bran. Journal of Nutrition and Metabolism, 2017, 1-6.
[22] Brockman, D. A., Chen, X., & Gallaher, D. D. 2013. Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. European Journal of Nutrition, 52(7), 1743-1753.
[23] Ademosun, A. O., Oboh, G., Olasehinde, T. A., & Adeoyo, O. O. 2018. From folk medicine to functional food: a review on the bioactive components and pharmacological properties of citrus peels. Oriental Pharmacy and Experimental Medicine, 18(1), 9-20.
[24] Ou, S., Kwok, K. C., Li, Y., & Fu, L. 2001. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49(2), 1026-1029.
[25] Grundy, M. M. L., Edwards, C. H., Mackie, A. R., Gidley, M. J., Butterworth, P. J., & Ellis, P. R. 2016. Re-evaluation of the mechanisms of dietary fibre and implications for macronutrient bioaccessibility, digestion and postprandial metabolism. British Journal of Nutrition, 116(5), 816-833.
[26] Sasaki, T., & Kohyama, K. 2012. Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chemistry, 133(4), 1420-1426.
[27] Sasaki, T., Sotome, I., & Okadome, H. 2015. In vitro starch digestibility and in vivo glucose response of gelatinized potato starch in the presence of non‐starch polysaccharides. Starch‐Stärke, 67(5-6), 415-423.

[28] Dhital, S., Gidley, M. J., & Warren, F. J. 2015. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications. Carbohydrate Polymers, 123, 305-312.
[29] Hansen, W. E., & Schulz, G. 1982. The effect of dietary fiber on pancreatic amylase activity in vitro. Hepato-gastroenterology, 29 (4), 157-160.
[30] Chelpanova, T. I., Vitiazev, F. V., & Efimtseva, É. A. 2012. Effect of pectin substances on activity of human pancreatic alpha-amylase in vitro. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova, 98(6), 734-743.
[31] Bai, Y., Atluri, S., Zhang, Z., Gidley, M. J., Li, E., & Gilbert, R. G. 2021. Structural reasons for inhibitory effects of pectin on α-amylase enzyme activity and in-vitro digestibility of starch. Food Hydrocolloids, 114, 106581, 1-10.
[32] Chevalier, L. M., Rioux, L. E., Angers, P., & Turgeon, S. L. 2019. Study of the interactions between pectin in a blueberry puree and whey proteins: Functionality and application. Food Hydrocolloids, 87, 61-70.
[33] Apostolidis, E., Kwon, Y. I., Ghaedian, R., & Shetty, K. 2007. Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnology, 21(3), 217-236.
[34] Kumar, V., Sinha, A. K., Makkar, H. P., de Boeck, G., & Becker, K. 2012. Dietary roles of non-starch polysachharides in human nutrition: a review. Critical Reviews in Food Science and Nutrition, 52(10), 899-935.
[35] Ro, J., Kim, Y., Kim, H., Jang, S. B., Lee, H. J., Chakma, S., ... & Lee, J. 2013. Anti-oxidative activity of pectin and its stabilizing effect on retinyl palmitate. The Korean Journal of Physiology & Pharmacology, 17(3), 197-201.
[36] Akbari-Adergani, B., Zivari Shayesteh, P., & Pourahmad, R. 2021. Evaluation of some functional properties of extracted pectin from pomegranate peel by microwave method. Journal of Food Technology and Nutrition, 18(3), 5-16.
[37] Smirnov, V. V., Golovchenko, V. V., Vityazev, F. V., Patova, O. A., Selivanov, N. Y., Selivanova, O. G., & Popov, S. V. 2017. The antioxidant properties of pectin fractions isolated from vegetables using a simulated gastric fluid. Journal of Chemistry, 2017, 1-10.
[38] Chen, K., Zhu, L. X., Zhan, X. F., & Zhang, S. A. 2018. Extraction and characterization of pectin from the peel powder of Aloe barbadensis. In IOP Conference Series: Earth and Environmental Science, 185(1), 012028). IOP Publishing.
[39] Wathoni, N., Shan, C. Y., Shan, W. Y., Rostinawati, T., Indradi, R. B., Pratiwi, R., & Muchtaridi, M. 2019. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon, 5(8), e02299, 1-5.
[40] Torkova, A. A., Lisitskaya, K. V., Filimonov, I. S., Glazunova, O. A., Kachalova, G. S., Golubev, V. N., & Fedorova, T. V. 2018. Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PloS one, 13(9), e0204261,1-24.
[41] Avila, J. A. D., Ochoa, M. A. V., Parrilla, E. A., González, E. M., & Aguilar, G. A. G. 2018. Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity. Journal of Food Measurement and Characterization, 12(2), 992-1004.
[42] Mercado-Mercado, G., Laura, A., & Alvarez-Parrilla, E. 2020. Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. Journal of Molecular Structure, 1199, 126967, 1-9.
[43] Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016, 1-13.
[44] Rubio-Senent, F., Rodríguez-Gutiérrez, G., Lama-Muñoz, A., García, A., & Fernández-Bolaños, J. 2015. Novel pectin present in new olive mill wastewater with similar emulsifying and better biological properties than citrus pectin. Food Hydrocolloids, 50, 237-246.
[45] Müller, L., Fröhlich, K., & Böhm, V. 2011. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129(1), 139-148.
[46] Torki Baghbadorani, S., Ehsani, M. R., Mirlohi, M. EzzatPanah H. 2014. Comparison of 4 methods for measuring anti-oxidant capability in order to investigate the effect for fermentation of ultra heat treatment soy milk by Lactobacillus plantarum, Journal of Food Science and Technology, 12(46), 1-13.
[47] Elfahri, K. R., Vasiljevic, T., Yeager, T., & Donkor, O. N. 2016. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. Journal of Dairy Science, 99(1), 31-40.
[48] Bagheri, F., Mirdamadi, S., Mirzaei, M., & Safavi, M. 2020. Production of functional fermented milk by Lactobacilli isolated from traditional iranian dairy products. Innovative Food Technologies, 7(2), 243-255.
[49] Soleymanzadeh, N., Mirdamadi, S., Mirzaei, M., & Kianirad, M. 2019. Novel β-casein derived antioxidant and ACE-inhibitory active peptide from camel milk fermented by Leuconostoc lactis PTCC1899: Identification and molecular docking. International Dairy Journal, 97, 201-208.
[50] Ramakrishna, R., Sarkar, D., Dogramaci, M., & Shetty, K. 2021. Kefir culture-mediated fermentation to improve Phenolic-Linked antioxidant, anti-hyperglycemic and human gut health benefits in sprouted food barley. Applied Microbiology, 1(2), 377-407.
[51] Mirzaei, M., Mirdamadi, S., Ehsani, M. R., & Aminlari, M. 2018. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. Journal of Food and Drug Analysis, 26(2), 696-705.
[52] Shu, G., Shi, X., Chen, L., Kou, J., Meng, J., & Chen, H. 2018. Antioxidant peptides from goat milk fermented by Lactobacillus casei L61: Preparation, optimization, and stability evaluation in simulated gastrointestinal fluid. Nutrients, 10 (6), 797, 1-13.
[53] Abdel-Hamid, M., Romeih, E., Gamba, R. R., Nagai, E., Suzuki, T., Koyanagi, T., & Enomoto, T. 2019. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. International Dairy Journal, 91, 1-8.
[54] Shin, J. Y., Jeon, W. M., Kim, G. B., & Lee, B. H. 2004. Purification and characterization of intracellular proteinase from Lactobacillus casei ssp. casei LLG. Journal of Dairy Science, 87(12), 4097-4103.
[55] DÜz, M., DoĞan, Y. N., & DoĞan, İ. 2020. Antioxidant activitiy of Lactobacillus plantarum, Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. Anais da Academia Brasileira de Ciências, 92(4), 1-13.