بررسی زنده‌مانی سویه‌های پروبیوتیک لاکتوباسیلوس اسیدوفیلوس، بیفیدوباکتریوم و استرپتوکوکوس ترموفیلوس و تاثیر آن‌ها بر خواص حسی شکلات تلخ پروبیوتیک نگهداری در دمای اتاق و یخچال به مدت 180 روز

نویسنده
گروه مهندسی علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد تهران شمال
چکیده
افزایش آگاهی جامعه نسبت به مزایای پیشگیری فراورده‌های فراسودمند موجب شده تا محصولات غذایی که محبوبیت زیاد و مصرف فراگیری دارند توسط محققین جهت بهبود سلامت جامعه انتخاب شوند. در این تحقیق شکلات تلخ پروبیوتیک با استفاده از افزودن باکتری‌های Lactobacillus acidophilus, DDS-1® ، Bifidobacterium, UABla-12 و Streptococcus thermophilus (TH-4®) به شکل ریزپوشانی شده با آلژینات سدیم و نشاسته مقاوم ذرت به شکلات تلخ 60% تولید شده و زنده مانی پروبیوتیک‌ها و نیز تأثیر حضور این باکتری‌ها بر روی ویژگی‌های حسی شکلات در طول بازه نگهداری 180 روزه در دو دمای c° 4 و c° 25 (با هدف تعیین دمای ذخیره سازی) با عبور از شبیه ساز دستگاه گوارش و هنگام تحویل به روده‌ها ارزیابی شد. در طی دوره نگهداری جمعیت هر سه سویه نسبت به خود و دیگر سویه‌ها در دو دمای نگهداری دارای تفاوت معنی‌دار و با کاهش همراه بود (05/0> P). نگهداری محصول در دمای c° 4 موجب زنده مانی جمعیت بیفیدوباکتریوم در سطح log cfu/g 7 و در دو سویه دیگر در سطح log cfu/g 8 و در دمای c° 25 نیز log cfu/g 7 بود که نشان از حفظ شرایط پروبیوتیک محصول در هر دو دما داشت. همچنین نتایج نشان داد که افزودن این سه سویه از باکتری‌های پروبیوتیک تأثیر معنی داری (05/0> P) بر ویژگی‌های حسی شکلات تلخ با توجه به دو دمای نگهداری نگذاشته اما نگهداری در دمای c° 25 در نمونه‌های کنترل و پروبیوتیک‌ها موجب افت کیفیت حسی شکلات شد. لذا نگهداری شکلات تلخ پروبیوتیک در دمای c° 4 می‌تواند موجب شود تا این محصول به مدت حداقل 6 ماه ماندگاری داشته و به عنوان یک محصول فراسودمند به بازار مصرف ارائه شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of survival of probiotic strains of Lactobacillus acidophilus, Bifidobacterium and Streptococcus thermophilus and their effect on sensory properties of probiotic dark chocolate during storage at room temperature and refrigerated for 180 days

نویسنده English

Nima Mobahi
Department of Food Science and Technology, Faculty of Maritime Sciences and Technologies, Tehran North Branch, Islamic Azad University, Tehran, Iran
چکیده English

Increasing public awareness of the benefits of preventing functonal products has led to the selection of food products that are very popular and widely consumed by researchers to improve public health. In this study, probiotic dark chocolate (PDC) Was enriched with Lactobacillus acidophilus, DDS-1®, Bifidobacterium, UABla-12 ™ and Streptococcus thermophilus (TH-4®) in the form of microencapsulation with sodium alginate and resistant corn starch to 60% dark chocolate. Production and survival of probiotics and the effect of the presence of these bacteria on the sensory properties of chocolate during a 180-day storage period at 4 °C and 25 °C (with the aim of determining the storage temperature) by passing through the gastrointestinal simulator and when Intestinal delivery was assessed. During the population maintenance period, all three strains had a significant difference with themselves and other strains in the two storage temperatures and were associated with a decrease (P <0.05). Storage of the product at 4 °C caused the survival of Bifidobacterium population at 7 log cfu/g level, in the other two strains at 8 log cfu / g level and at 25 °C 7 log cfu/g, which indicates the maintenance of probiotic conditions the product was at both temperatures. The results also showed that the addition of these three strains of probiotic bacteria did not have a significant effect (P <0.05) on the sensory properties of dark chocolate due to two storage temperatures, but storage at 25 °C in control and probiotic samples reduced sensory quality. Therefore, storing probiotic dark chocolate at a temperature of 4 °C can make this product last for at least 6 months and be presented to the consumer market as a useful product.

کلیدواژه‌ها English

probiotics
dark chocolate
Viability
Sensory properties
Afoakwa, E. O. 2010. Chocolate Science and Technology, Blackwell, Oxford, United Kingdom.
Beckett, S. T. 2009. Industrial chocolate manufacture and use (4th ed.). Oxford, UK: Blackwell Publishing.
Bolenz, S., Holm, M., & Langkrar, C. 2014. Improving particle size distribution and flow properties of milk chocolate produced by ball mill and blending. European Food Research and Technology, 238, 139–147.
Afoakwa, E. O., Paterson, A. Afoakwa, E. O., Paterson, A. & Fowler, M. 2007a. Factors influencing rheological and textural qualities in chocolate – a review. Trends in Food Science and Technology. 18,290–298.
Harwood, M. L. 2013. A novel method to assess consumer acceptance of bitterness inchocolate products (p. 123). Thesis in The Pennsylvania State University the Graduate School College of Agricultural Sciences, US.
http://www.fda.gov/Food/LabelingNutrition/LabelClaims/QualifiedHealthClaims/ucm109462.htm
de Morais, M. G. da Silva. B. V. 2015. de Morais. E. G. Vieira Costa, J. A. 2015. Biologically Active Metabolites Synthesized by Microalgae. BioMed Research International.
Mortazavian, A, M. Sohrabvandi, S (2006) Probiotics and food probiotic products; based on dairy probiotic products. Eta, Tehran. Lactobacillus casei
Robinson, R. K. 2002. Microbiology of therapeutic milks (ed) Dairy microbiology handbook. Wiley, New York, 431–478.
Shah, N. P. 2007. Functional cultures and health benefits. Int Dairy J 17:1262–1277.
Iravani, S. Korbekandi, H. Mirmohammadi, S. V. 2015. Technology and potential applications of probiotic encapsulation in fermented milk products. • J Food Sci Technol. v.52(8); 2015 Aug.
Lenfestey, M. W. Josef Neu, J. 2017. Probiotics in Newborns and Children. 64(6):1271-1289.
Lalicˇic´-Petonijevic´, J. 2013. Sensory, Antioxidant and Rheological Properties of Different Types of Chocolates with Probiotics, PhD thesis, Faculty of Agriculture, University of Belgrade, Serbia (in Serbian).
Karamese, M. Aydin, H. Sengul, E. Gelen, V. Sevim, C. Ustek, D. 2016. The immunostimulatory effect of lactic acid bacteria in a rat model, Iran. J. Immunol. 13 (3), 220-228.
Morais, G. C., Morais, A. R., André Bolini, H. M. 2015. Prebiotic and diet/light chocolate dairy dessert: Chemical composition, sensory profiling and relationship with consumer expectation. LWT - Food Science and Technology 62 (1): 424-430.
Díaz-Muñiz, I., Banavara, D. S., Budinich, M. F., Rankin, S.A., Dudley, E. G., Steele, J. L. 2006. Lactobacillus casei metabolic potential to utilize citrate as an energy source in ripening cheese: a bioinformatics approach. J. Appl. Microbiol. 872–882.
Engelbrekston, A. L., Korzenik, J. R., Sanders, M. E., Clement, B. G., Leyer, G., Klaenhammer, T. R., & Kitts, C. L. (2006). Analysis of treatment effects on the microbial ecology of the human intestine. FEMS Microbiology Ecology, 57, 239–250.
Lalicˇic´-Petronijevic´, J. Popov-Raljic´, J. Obradovic´, D. Radulovic´, Z. Paunovic´, D. Petrušic´, D. Pezo, L. 2015. Viability of probiotic strains Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 and their impact on sensory and rheological properties of milk and dark chocolates during storage for 180 days. Journal of Functional Foods 15. 541–550.
Lu, Y. Huang, L. Yang, T. Lv, F. Lu, Z. 2017. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology. LWT - Food Science and Technology. 80. 92-97.
Brant, J., Kurt, S., Sarah, O., Jun, G. Y., & Todd, K. 2013. Identification of extracellular surface-layer associated proteins in lactobacillus acidophilusncfm. Microbiology-sgm, 159(Pt 11), 2269-2282.
Ouwehand, A. C., ten Bruggencate, S. J., Schonewille, A. J., Alhoniemi, E., Forssten, S. D., & Bovee-Oudenhoven, I. M. (2014). Lactobacillus acidophilus supplementation in human subjects and their resistance to enterotoxigenic Escherichia coli infection. British Journal of Nutrition, 111(3), 465-73.
Hymes, J. P., Johnson, B. R., Barrangou, R., & Klaenhammer, T. R. (2016). Functional analysis of an s-layer-associated fibronectin-binding protein in lactobacillus acidophilus ncfm. Applied & Environmental Microbiology, 82(9), 2676-2685.
Arora, T., Anastasovska, J., Gibson, G., Tuohy, K., Sharma, R. K., & Bell, J., et al. 2012. Effect of lactobacillus acidophilus ncdc supplementation on the progression of obesity in diet-induced obese mice. British Journal of Nutrition, 108(8), 1382-9.
Sohail, A., Turner, M. S., & Coombes, A. 2013. The viability of lactobacillus rhamnosus gg and lactobacillus acidophilus ncfm following double encapsulation in alginate and maltodextrin. Food and Bioprocess Technology, 6(10), 2763-2769.
Mu, R. J., Ni, Y., Wang, L., Yuan, Y., Yan, Z., Pang, J., et al. 2017. Fabrication of ordered konjac glucomannan microfiber arrays via facile microfluidic spinning method. Materials Letters, 196, 410-413.
Chetana, R., Reddy, S. R. Y., & Negi, P. S. (2013). Preparation and properties of probiotic chocolate using yoghurt powder. Food and Nutrition Sciences, 4, 276–281.
Nebesny, E., Zyzelewicz, D., Motyl, I., & Libudzisz, Z. (2007). Dark chocolates supplemented with Lactobacillys strains. European Food Research Technology, 225, 33–42.
Patel, P., Parekh, T., & Subhash, R. (2008). Development of probiotic and symbiotic chocolate mousse: A functional food. Biotechnology (Reading, Mass.), 7(4), 769–774.
Homayouni, A. Azizi, A. Ehsani, M.R. Yarmand, M.S. Razavi, S. H. 2008. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry. 111. 50–55.
Afoakwa, E. O., Paterson, A. Afoakwa, E. O., Paterson, A. & Fowler, M. 2007a. Factors influencing rheological and textural qualities in chocolate – a review. Trends in Food Science and Technology. 18,290–298.
Gültekin-Ozgüven, M. Berktas, I. Beraat, O. 2016. Influence of processing conditions on procyanidin profiles and antioxidant capacity of chocolates: Optimization of dark chocolate manufacturing by response surface methodology. LWT - Food Science and Technology 66: 252-259.
Beckett, S. T. 1999. Industrial chocolate manufacture and use (3rd ed.). Blackwell. Oxford, United Kingdom.
Lalicˇic´-Petonijevic´, J. 2013. Sensory, Antioxidant and Rheological Properties of Different Types of Chocolates with Probiotics, PhD thesis, Faculty of Agriculture, University of Belgrade, Serbia.
ISO 8586-1. 1993. Sensory analysis, General guidance for the selection, training and monitoring of assessors — Part 1: Selected assessors
ISO 8586-2. 2008. Sensory analysis, General guidance for the selection, training and monitoring of assessors — Part 2: Expert sensory assessors
Doleyres, Y., & Lacroix, C. 2005. Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. International Dairy Journal, 15(10), 973–988.
Bernardeau, M., Guguen, M., & Vernoux, J. P. 2006. Beneficial lactobacilli in food and feed: Long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiology Review, 30, 487–513.
Nag, A., & Das, S. 2013. Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. Journal of Functional Foods, 5, 170–177.
Crittenden, R. 2009. Incorporating probiotics into foods. In Y. K. Lee & S. Salminen (Eds.), Handbook of probiotics and prebiotics (pp. 58–75). Hoboken, NJ: JohnWiley & Sons, Inc.
Saarela, M., Rantala, M., Hallamaa, K., Nohynek, L., Virkajarvi, I., & Matto, J. 2004. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal of Applied Microbiology, 96, 1205– 1214.
Lahtinen, S. J., Ouwehand, A. C., Salminen, S. J., Forssell, P., & Myllarinen, P. 2007. Effect of starch- and lipid-based encapsulation on the culture ability of two Bifidobacterium longum strains. Letters in Applied Microbiology, 44, 500–505.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11, 506e514.
Konar, N. Toker, O. S. Oba, S. Sagdic. O. 2016. Improving functionality of chocolate: A review on probiotic, prebiotic, and/or synbiotic characteristics. Trends in Food Science & Technology. 49. 35-44
Maillard, M., & Landuyt, A. 2008. Chocolate: An ideal carrier for probiotics. Teknoscienze, 19(3), 13–15.
Possemiers, S., Marzorati, M., Verstraete, W., & Van derWiele, T. 2010. Bacteria and chocolate: A successful combination for probiotic delivery. International Journal of Food Microbiology, 141, 97–103.
Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. 2009. Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chemistry, 113, 208– 215.
Nightingale, L. M., Lee, S.-Y., & Engeseth, N. J. 2011. Impact of storage on dark chocolate: Texture and polymorphic changes. Journal of Food Science, 76(1), 142–153.
Tournier, C., Sulmont-Rosse, C., & Guichard, E. 2007. Flavour perception: Aroma, taste and texture interactions. Food, 1(2), 246–257, Global Science Books, ISSN 1749–7140.
Mohammadi, R., Mortazavian, A. M., Khosrokhavar, R., & Da Cruz, A. G. 2011. Probiotic ice cream: Viability of probiotic bacteria and sensory properties. Annals of Microbiology, 61, 411–424.
Heenan, C. N., Adams, M. C., Hosken, R. W., & Fleet, G. H. 2004. Survival and sensory acceptability of probiotic microorganisms in a non-fermented frozen vegetarian dessert. LWT – Food Science and Technology, 37, 461–466.