نانوالیاف حاصل از الکتروریسی زئین به عنوان نانوحامل اسانس اکالیپتوس: بررسی ویژگی‫ها و خاصیت ضد میکروبی‬‬‬‬‬

نویسندگان
1 دانشجوی سابق کارشناسی ارشد گیاهان دارویی، دانشکده کشاورزی، دانشگاه زابل، ایران.‬‬‬‬‬‬‬‬‬‬‬
2 استادیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زابل، ایران.
3 استادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه زابل، ایران.
4 استادیار، گروه علوم باغبانی، دانشکده کشاورزی،دانشگاه زابل، ایران.
چکیده
اکـالیپتوس یکی از گیاهان دارویی معروف میباشد که از گذشته تاکنون از لحاظ دارا بودن خواص مختلف به ویژه اثر ضد میکروبی، مورد توجه بوده است. این تحقیق با هدف ساخت نانوالیاف به عنوان نانوحامل اسانس اکالیپتوس و بررسی ویژگیها و خاصیت ضدمیکروبی نانوالیاف برای کنترل باکتریهای استافیلوکوکوس اورئوس و اشریشیا کلی انجام شد. بدین منظور اسانس اکالیپتوس در غلظتهای 0، 5/2، 5 و 10 درصد با محلول زئین مخلوط و توسط فرآیند الکتروریسی، نانوالیاف تهیه شد. ترکیبات موثره اسانس با استفاده از گروماتوگرافی گازی- طیف سنجی جرمی (GC-MS) شناسایی شدند. به منظور بررسی ویژگیهای نانوالیاف تهیه شده، آزمونهای تصاویر میکروسکوپ الکترونی روبشی (SEM)، بررسی قطر نانوالیاف با استفاده از نرم افزار Image J، میکروسکوپ نیروی اتمی (AFM)، آنالیز پراش اشعه ایکس (XRD)، آنالیز حرارتی روبشی افتراقی (DSC)، و طیف سنجی تبدیل فوریه مادون قرمز (FTIR)، انجام شد. همچنین آزمون بررسی خاصیت ضدمیکروبی نانوالیاف به روش انتشار دیسک انجام شد. نتایج نشان داد که با افزودن اسانس اکالیپتوس، قطر نانوالیاف از nm 102 به 193 نانومتر افزایش یافت. نتایج XRD بیانگر ساختار آمورف نانوالیاف زئین بود. نتایج حاصل از DSC وجود اسانس در نانوالیاف را اثبات نمود. نتایج حاصل از FTIR، نشان دهنده واکنش بین زئین و اسانس بود. نانوالیاف حامل اسانس اکالیپتوس برای دو باکتری گرم مثبت و گرم منفی مورد مطالعه دارای خاصیت مهارکنندگی بود. لذا، میتوان از نانوالیاف بارگذاری شده زئین با اسانس اکالیپتوس به عنوان بسته بندی فعال در طیف گستردهای از فرآوردههای غذایی استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Electrospun zein nanofibers as a nanocarrier of Eucalyptus essential oil: Characterization, and antimicrobial properties

نویسندگان English

nazafarin rahmatinia 1
Mehdi Aran 2
mohammad amin Miri 3
Darosh Ramezan 4
1 Former M.Sc. student, Department of Horticulture, Faculty of Agriculture, University of Zabol, Zabol, Iran.
2 Assistant Professor, Department of Horticulture, Faculty of Agriculture, University of Zabol, Zabol, Iran.
3 Department of Food Science and Technology, Zabol University, Zabol, Iran.
4 Assistant Professor, Department of Horticulture, Faculty of Agriculture, University of Zabol, Zabol, Iran.
چکیده English

Eucalyptus is an important medicinal plant that is widely used for its antimicrobial properties. The aim of this research was to fabricate electrospun nanofibers as nano carrier of eucalyptus essential oil, and to characterize them, and to study the antimicrobial properties of nanofibers against S. aureus and E. coli. Eucalyptus essential oil was mixed at different concentrations of 0%, 2.5%, 5%, and 10% in zein solution and electrospun zein nanofibers prepared by electrospinning process. GC-MS analysis was done to identify the components of the Ecalyptus essential oil. The electrospun zein nanofibers containing Eucalyptus essential oil were characterized by Scanning electron microscopy (SEM), Image J, Atomic force microscopy (AFM), X-ray diffraction (XRD), Differential scanning calorimetric (DSC), and Fourier transform infrared (FTIR). Disc diffusion method was used to study the antimicrobial properties of nanofibers. Results indicated that diameters of electrospun zein nanofibers increased with increasing concentration of essential oil from 102 nm to 193 nm. XRD results determined that zein nanofibers were in amorphous structure. DSC results verified the existence of Eucalyptus essential oil in nanofibers. FTIR results indicated the interaction between Eucalyptus essential oil and zein. Antimicrobial results showed that the Eucalyptus essential oil loaded nanofibers were effective against both studied gram positive and gram negative bacteria. Therefore, Eucalyptus essential oil loaded nanofibers could be used as active packaging for variety of foods.

کلیدواژه‌ها English

Eucalyptus essential oil
Nano carrier
Electrospinning
[1] Rezaei, M., Aran, M., Amani, A. M., Miri, M. A., ans Ramezan, D. 2021. Use of electrospun chitosan nanofibers as nanocarriers of Artemisia sieberi extract: Evaluation of properties and antimicrobial effects. Iranin Journal of Food Science and Technology, 18(112), 323–334.
[2] Hafsa, J., Smach, M. A, Khedher, M. R. B., Charfeddine, B., Limem, K., Majdoub, H., and Rouatbi, S. 2016. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT - Food Science and Technology.
[3] Siddiqui, B., and Sultana, I. 2004.Triterpenoidal constituents from Eucalyptus camaldulensis var. Obtusa leves. Phytochem, 54: 861-865
[4] Srinivasan, D., Nathan, S. and Suresh, T. 2001. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. Journal of Ethnopharmacol, 74: 217-220.
[5] Adebola, O., Olusegun, E. and Olayide, N. 1999. Antimicrobial activity of the essential oils of five Eucalyptus species growing in Nigeria. Fitotera, 70: 526-528.
[6] Reneker, D., and Chun, I. 1996. Nanometer diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7, 3, 216-223.
[7] Miri, M. A., Ghorani, B., Miri, H. R. Electroencapsulation: Fundamentals and applications in food industry. Iranian Journal of Food Science and Technology, 89(16), 1-21.
[8] Elzoghby, A. O., Samy, W. M., and Elgindy, N. A. 2012. Protein-based nanocarriers as promising drug and gene delivery systems. Journal of Controlled Release, 161(1):38-49.
[9] Peng, Y. Y., Glattauer, V., Ramshaw, J. A and Werkmeister, J. A. 2010. Evaluation of the immunogenicity and cell compatibility of avian collagen for biomedical applications. Journal of Biomedical Materials Research, 93(4):1235-44.
[10] Chen, L., Remondetto, G. E., and Subirade, M. 2006. Food protein-based materials as nutraceutical delivery systems. Trends in Food Science and Technology, 17(5):272-83.
[11] Shukla, R., and Cheryan, M. 2001. Zein: The industrial protein from corn. Industrial Crops and Products, 13, 171–192.
[12] Miri M. A, Habibi-Najafi M. B., Movaffagh, J., Najafi, M., Ghorani, B., Koocheki, A. 2016. Optimization of Elecrospinning Process of Zein Using Central Composite Design. Fibers and Polymers, 17(5): 769-777.
[13] Movaffagh, J., Amiri, N., Ebrahimi, S., Kalalinia, B. F., Fazli Bazaz, B. S., Azizzadeh, M., Arabzadeh, S., Miri, M. A. 2018. Electrospun zein nanofibers as nanocarrier of vancomycin: Characterization, release and antibacterial properties. Iranian Journal of Food Science and Technology, 80(15): 199-212.
[14] Torres-Giner, S., Gimenez, E., and Lagaron, J. M. 2008. Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601–614.
[15] Miri, M. A., Habibi-Najafi, M. B., Movaffagh, J., and Ghorani, B. 2020. Encapsulation of Ascorbyl Palmitate in Zein by Electrospinning Technique. Journal of Polymers and the Environment, 5. https://doi.org/10.1007/s10924-020-01954-x
[16] Brahatheeswaran, D., Mathew, A., Aswathy, R. G., Nagaoka, Y., Venugopal, K., Yoshida, Y., Maekawa, T., and Sakthikumar, D. 2012. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomedical Materials, 7: 045001.
[17] Seydim, A. C., and Sarikus, G. 2006. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5): 639-644.
[18] Ramakrishna, S., Fujihara, K., Teo, W., Lim, T., Ma, Z. 2005. An Introduction to Electrospinning and Nanofibers. World Scientific Publishing Co. Singapore.
[19] Tan, S. H., Inai, R., Kotaki, M., and Ramakrishna, S. 2005. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46(16), 6128–6134.
[20] Nayak, R., Padhye, R., Kyratzis, I. L., Truong, Y. B., and Arnold, L. 2013. Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Textile Research Journal, 83(6), 606–617.
[21] Huang, W., Zou, T., Li, S., Jing, J., Xia, X., and Liu, X. 2013. “Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process,” AAPS PharmSciTech, 14, 2, 675–681.
[22] Neo, Y. P., Ray, S., Jin, J., Nikolaidis, M. G, Nieuwoudt, M. K., Liu, D., Quek, S. Y. 2013. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chemistry, 136, 1013–1021.
[23] Luo, Y., Zhang, B., Whent, M., Yu, L. L., and Wang, Q. 2011. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145–152.
[24] Paula, H., Sombra, F., Cavalcante, R., Abreu, F., Paula, R. 2011. Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering: C. 31. 173-178.
[25] Chen, H. 2014. Fabrication of Zein Nanoparticle-Biopolymer Complexes to Deliver Essential Oils in Aqueous Dispersions. University of Tennessee.
[26] Moomand, K., and Lim, L. T. 2015. Effects of solvent and n-3 rich fish oil on physicochemical properties of electrospun zein fibres. Food Hydrocolloids, 46, 191–200.
[27] Dabbagh Moghaddam, A., Kazemi, M., Jebraeel, M., Sharifan, A. 2019. Design of Zein Electrospinning Nanofiber Packaging Containing ''Zataria Multiflora'' Essential Oil to Preserve the Ration Food. Food Technology and Nutrition (Iran). 2019 (16) 3: 91-103.
[28] Rieger, K. A., and Schiffman, J. D. 2014. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydrate Polymers, 113, 561–568.
[29] Rojas, E. R., Billings, G., Odermatt, P. D., Auer, G. K., Zhu, L., Miguel, A., Chang, F., Weibel, D. B., Theriot, J. A., and Huang, K. C. 2018. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature, 559,7715, 617–621.
[30] Nohynek, L. J., Alakomi, H. L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K. M., and Puupponen-Pimiä, R. H. 2006. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, 54, 1, 18–32.