تاثیر حضور باکتری‌های لاکتوباسیلوس اسیدوفیلوس، بیفیدوباکتریوم و استرپتوکوکوس ترموفیلوس بر خواص فیزیکوشیمیایی، رنگ سنجی و رئولوژیک شکلات تلخ پروبیوتیک

نویسنده
گروه مهندسی علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد تهران شمال
چکیده
شکلات تلخ به عنوان محصولی پر فروش در سراسر جهان با ترکیبات اصلی سلامت محور مانند پودر و کره کاکائو در کنار سطح بالایی از آگاهی مصرف کنندگان در ارتباط با حفظ و افزایش سلامتی، ایده غنی سازی انواع شکلات با سویه‌های باکتری پروبیوتیک را تقویت می‌کند. هدف از این تحقیق اثرات حضور باکتری‌های ریزپوشانی شده لاکتوباسیلوس اسیدوفیلوس، استرپتوکوکوس ترموفیلوس و بیفیدوباکتریوم با آلژینات سدیم و نشاسته مقاوم ذرت بر خواص فیزیکوشیمیایی شامل سنجش رطوبت، اسیدیته، فعالیت آبی، توزیع اندازه ذرات و سختی بافت، رنگ سنجی و ویژگی‌های رئولوژی شامل سنجش گرانروی ظاهری و پلاستیک شکلات تلخ پروبیوتیک در طول بازه نگهداری 180 روز در دو دمای c° 4 و c° 25 با هدف تعیین دمای ذخیره سازی بررسی شدند. به منظور تجزیه و تحلیل داده‌های حاصل از تحقیق، از آزمایش فاکتوریل در قالب طرح کاملا تصادفی استفاده شد و مقایسه میانگین‌ها توسط آزمون چند دامنه‌ای دانکن، در سطح احتمال (%1=α) انجام پذیرفت. طبق نتایج در دوره‌های روز 0، 7، 30، 90، 150 و 180 ویژگی‌های فیزیکوشیمیایی، رنگ شکلات و رئولوژیکی در دو دمای نگهداری و نیز در میان تیمارهای مختلف شکلات تلخ پروبیوتیک حاصل از سویه‌ها تفاوت معنی‌دار (05/0> P) مشاهده نشد. بدین ترتیب هر سه محصول به عنوان شکلات تلخ پروبیوتیک دارای ویژگی‌های مناسبی از نظر خصوصیات ذکر شده جهت حضور در بازار مصرف را دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of the presence of Lactobacillus acidophilus, Bifidobacterium and Streptococcus thermophilus on physicochemical, colorimetric and rheological properties of probiotic dark chocolate

نویسنده English

Nima Mobahi
Department of Food Science and Technology, Faculty of Maritime Sciences and Technologies, Tehran North Branch, Islamic Azad University
چکیده English

Dark chocolate as a best-selling product worldwide with the main health-oriented ingredients such as cocoa powder and butter, along with a high level of consumer awareness of maintaining and enhancing health, reinforces the idea of ​​enriching all types of chocolate with probiotic strains. The aim of this study was to investigate the effects of the presence of microencapsulated bacteria Lactobacillus acidophilus, Streptococcus thermophilus and Bifidobacterium using sodium alginate and resistant corn starch on physicochemical properties including moisture, acidity, water activity, particle size distribution and texture, the plastic and apparent viscosity of probiotic dark chocolate were investigated during storage for 180 days at 4 ° C and 25 ° C to determine the storage temperature. In order to analyze the data obtained from the research, factorial experiment in the form of a completely randomized design was used and the comparison of means was performed by Duncanchr('39')s multiple range test at the probability level (α = 1%). According to the results, in days 0, 7, 30, 90, 150 and 180 physicochemical, chocolate and rheological properties at two storage temperatures and also between different treatments of probiotic dark chocolate obtained from the strains, no significant difference (P <0.05) was observed. Thus, all three products as probiotic dark chocolate have suitable characteristics in terms of the mentioned characteristics to be present in the consumer market.

کلیدواژه‌ها English

probiotics
dark chocolate
Physicochemical characterise
colorimetry
Rheological properties
Afoakwa, E. O., Paterson, A. Afoakwa, E. O., Paterson, A. & Fowler, M. 2007a. Factors influencing rheological and textural qualities in chocolate – a review. Trends in Food Science and Technology. 18. 290–298.
Afoakwa, E. O., Budu, A. S. & Merson, B. A. 2007b. Response surface methodology for studying the effect of processing conditions on some nutritional and textural properties of bambara groundnuts (Voandzei subterranea) during canning. International Journal of Food Sciences and Nutrition. 5. 270–281.
Gültekin-Ozgüven, M. Berktas, I. Beraat, O. 2016. Influence of processing conditions on procyanidin profiles and antioxidant capacity of chocolates: Optimization of dark chocolate manufacturing by response surface methodology. LWT - Food Science and Technology. 66. 252-259.
da Silva, T. L. T. Grimaldi, R. Gonçalves, L. A. G. 2017. Temperature, time and fat composition effect on fat bloom formation in dark chocolate. Food Structure. 14. 68-75.
Afoakwa, E. O., Fowler, A. M., Vieir, J. 2008. Effects of tempering and fat crystallisation behaviour on microstructure, mechanical properties and appearance in dark chocolate systems. Journal of Food Engineering. 89. 2-9.
Tanabe, N. A., Hofberger, R. 2006. Chocolate. In Y. H. Hui (Ed.), Handbook of food science, technology, and engineering. Boca Raton: CRC Press.
Afoakwa, E. O. 2010. Chocolate Science and Technology, Blackwell, Oxford, United Kingdom.
Beckett, S. T. 2009. Industrial chocolate manufacture and use (4th ed.). Oxford, UK: Blackwell Publishing.
Briones. B., Aguilera, J. M., Brown, C. 2006. Effect of surface topography on color and gloss of chocolate samples. Journal of Food Engineering. 77(4). 776-783.
Glicerina, V. Balestra, F. Rosa, M. D. Romani, S. 2013. Rheological, textural and calorimetric modifications of dark chocolate during process. Journal of Food Engineering. 119. 173-179.
Beckett, S. T. 1999. Industrial chocolate manufacture and use (3rd ed.). Blackwell. Oxford, United Kingdom.
Lipp, M., Anklam E. 1998. Review of cocoa butter and alternative fats for use in chocolate—Part A. Compositional data." Food Chemistry. 62(1). 73-97.
Talbot, G. 1999. Chocolate temper. In Industrial Chocolate Manufacture and Use (3rd ed.). Oxford: Blackwell Science. 218–230.
Rodriguez Furlán, L. T., Baracco, Y., Lecot, J., Zaritzky, N., Campderrós, ME. 2017. Effect of sweetener combination and storage temperature on physicochemical properties of sucrose free white chocolate. Food Chemistry. 229. 610-620
Aguilera, J. M., Michel, M. & Mayor, G. 2004. Fat migration in chocolate: diffusion or capillary flow in a particulate solid? Hypothesis paper. Journal of Food Science. 69(7). 167–174.
Glicerina, V. Balestra, F Dalla-Rosa, M. Romani, S. 2013. Rheological, textural and calorimetric modifications of dark chocolate during process. Journal of Food Engineering. 119. 173–179.
Baixauli, R., Sanz, T., Salvadora, A., Fiszmana, S.M., 2007. Influence of the dosing process on the rheological and microstructural properties of a bakery product. Food Hydrocolloids. 21. 230–236.
Ahmed, J., Ramaswamy, H.S. 2006. Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering. 74. 376–382.
Servais, C., Ranch, H., Roberts, I. 2004. Determination of chocolate viscosity. Journal of Texture Studies. 34. 467–497.
Afoakwa, E., Paterson, A., Fowler, M. 2008a. Effects of particle size distribution and composition on rheological properties of dark chocolate. European Food Research and Technology. 226. 1259–1268.
Afoakwa, E., Paterson, A., Fowler, M., Veira, J. 2008b. Characterization of melting properties in dark chocolate from varying particle size distribution and composition using differential scanning calorimetry. Food Research International. 41. 751–757.
Afoakwa, E., Paterson, A., Fowler, M., Vieira, J. 2009. Microstructure and mechanical properties related to particle size distribution and composition in dark chocolate. International Journal of Food Science and Technology. 44. 111–119.
Lenfestey, M. W. Josef Neu, J. 2017. Probiotics in newborns and children. Pediatric clinics of north America. 64(6).1271-1289.
Lalicˇic´-Petronijevic´, J. Popov-Raljic´, J. Obradovic´, D. Radulovic´, Z. Paunovic´, D. Petrušic´, M. Pezo, L. 2015. Viability of probiotic strains Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 and their impact on sensory and rheological properties of milk and dark chocolates during storage for 180 days. Journal of Functional Foods. 15. 541–550.
Karamese, M. Aydin, H. Sengul, E. Gelen, V. Sevim, C. Ustek, D. 2016. The immunostimulatory effect of lactic acid bacteria in a rat model, Iran. J. Immunol. 13 (3). 220-228.
Morais, G. C., Morais, A. R., André Bolini, H. M. 2015. Prebiotic and diet/light chocolate dairy dessert: Chemical composition, sensory profiling and relationship with consumer expectation. LWT - Food Science and Technology. 62 (1). 424-430.
Díaz-Muñiz, I., Banavara, D. S., Budinich, M. F., Rankin, S.A., Dudley, E. G., Steele, J. L. 2006. Lactobacillus casei metabolic potential to utilize citrate as an energy source in ripening cheese: a bioinformatics approach. J. Appl. Microbiol. 872–882.
Engelbrekston, A. L., Korzenik, J. R., Sanders, M. E., Clement, B. G., Leyer, G., Klaenhammer, T. R., & Kitts, C. L. (2006). Analysis of treatment effects on the microbial ecology of the human intestine. FEMS Microbiology Ecology. 57. 239–250.
Ouwehand, A. C., ten Bruggencate, S. J., Schonewille, A. J., Alhoniemi, E., Forssten, S. D., & Bovee-Oudenhoven, I. M. (2014). Lactobacillus acidophilus supplementation in human subjects and their resistance to enterotoxigenic Escherichia coli infection. British Journal of Nutrition.111(3). 465-73.
Hymes, J. P., Johnson, B. R., Barrangou, R., & Klaenhammer, T. R. 2016. Functional analysis of an s-layer-associated fibronectin-binding protein in lactobacillus acidophilus ncfm. Applied & Environmental Microbiology. 82(9). 2676-2685.
Arora, T., Anastasovska, J., Gibson, G., Tuohy, K., Sharma, R. K., & Bell, J., et al. 2012. Effect of lactobacillus acidophilus ncdc supplementation on the progression of obesity in diet-induced obese mice. British Journal of Nutrition. 108(8). 1382-9.
Sohail, A., Turner, M. S., & Coombes, A. 2013. The viability of lactobacillus rhamnosus gg and lactobacillus acidophilus ncfm following double encapsulation in alginate and maltodextrin. Food and Bioprocess Technology. 6(10). 2763-2769.
Homayouni, A. Azizi, A. Ehsani, M.R. Yarmand, M.S. Razavi, S. H. 2008. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry. 111. 50–55.
Saarela, M., Rantala, M., Hallamaa, K., Nohynek, L., Virkajarvi, I., & Matto, J. 2004. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. Journal of Applied Microbiology. 96. 1205–1214.
Kemsawasd, V. Chaikham, P. Rattanasena, P. 2016. Survival of immobilized probiotics in chocolate during storage and with an in vitro gastrointestinal model. Food Bioscience. 16. 37–43.
ISIRI number 608. 2006. Institute of Standards and Industrial Research of Iran. Chocolate. Specification and test methods (7th. revision). Tehran, Iran.
Saputro, A. D. de Walle, D. V. Antan Caiquo, B. Hinneh, M. Kluczykoff, M. Dewettinck, K. 2019. Rheological behaviour and microstructural properties of dark chocolate produced by combination of a ball mill and a liquefier device as small-scale chocolate production system. LWT - Food Science and Technology. 100. 10–19.
International Confectionery Association (ICA). 2000. Viscosity of cocoa and chocolate products. Analytical Method. 46.
Farzanmehr, H., & Abbasi, S. 2009. Effects of inulin and bulking agents on some physicochemical, textural and sensory properties of milk chocolate. Journal of Texture Studies. 40. 536–553.
Namazi, L., Sahari, M. A., Zaringhalami, S. and Ghanati, K. 2011. Possibility of the Functional Oil Production from Flax (ω-3) and Safflower (ω-6) Seeds and Evaluation of Its Physico-chemical Properties During 4 Months Storage. Journal of Medicinal Plants. 4(40). 144-159.
Biquet, B. & Labuza, T. P. 1988. Evaluation of the moisture permeability characteristics of the chocolate films as an edible moisture barrier. Journal of Food Science. 53(4). 989–998.
Rossini, K., Norena, C. P. Z., & Brandelli, A. 2011. Changes in the colour of white chocolate during storage: potential roles of lipid oxidation and non-enzymatic browning reactions. Journal of Food Science and Technology. 48(3). 305–311.
Konar,N.Özhan,B. Artık,N. Dalabasmaz, S. Poyrazoglu, E. S. 2013. Rheological and physical properties of Inulin-containing milk chocolate prepared at different process conditions. CyTA - Journal of Food. 12:1. 55-64.
Budryn G, Nebesny E, Żyżelewicz D, Krysiak W, Motyl I, Libudzisz Z. 2007. Confectionery product of sugar-fat cores. Polish patent application: 3841542007in polish.
Mehrban-Roudbaneh, M. Homayouni Rad, A. Aref Hosseyni, S. R. 2017. Assessing the survival of Lactobacillus casei in probiotic chocolate during 6 months in ambient and refrigerated temperatures. Journal of Food Science and Technology. 62. Vol. 14.
Lalicˇic´-Petonijevic´, J. 2015. Sensory, Antioxidant and Rheological Properties of Different Types of Chocolates with Probiotics, PhD thesis, Faculty of Agriculture, University of Belgrade, Serbia (in Serbian).
Saputro, A. D. Van de Walle, D. Caiquo, B. A. Hinneh, M. Kluczykoff, M. Dewettinck, K. 2019. Rheological behaviour and microstructural properties of dark chocolate produced by combination of a ball mill and a liquefier device as small-scale chocolate production system. LWT - Food Science and Technology. 100. 10–19.
Guinard, J. X., & Mazzuchelli, R. 1999. Effect of sugar and fat on the sensory properties of milk chocolate: Descriptive analysis and instrumental measurement. Journal of the Science of Food and Agriculture. 79(11). 1331–1399.