بهینه سازی تولید فیلم زیست تخریب‌پذیر حاوی عصاره آبی ریشه گیاه چوبک و نانوامولسیون اسانس رزماری بر پایه ژلاتین به روش سطح پاسخ

نویسندگان
1 استاد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2 دکتری تخصصی، گروه بهداشت مواد غذایی و آبزیان، دانشکده دامپزشکی، دانشگاه فردوسی مشهد، ایران
3 دانشجوی دکتری، علوم وصنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
4 دانشجوی دکتری تخصصی، رشته بهداشت و ایمنی مواد غذایی، گروه بهداشت و ایمنی مواد غذایی، داشکده بهداشت، دانشگاه علوم پزشکی تهران
چکیده
در این پژوهش‌ از غلظت‌های مختلف عصاره آبی ریشه گیاه چوبک (در سطوح صفر، 5/0، 1، 5/1، و 2 درصد) با غلظت‌های مختلف نانوامولسیون اسانس رزماری (صفر، 5/0، 1، 5/1، و 2 درصد) با هدف بهینه‌سازی تولید فیلم زیست‌تخریب‌پذیر بر پایه ژلاتین مورداستفاده قرار گرفت. پاسخ های آزمون برای تمام مدل های رگرسیونی برازش شده از نظر آماری در سطح 99% اطمینان معنی دار بودند. برای بهینه‌سازی تولید فیلم بیشترین میزان شفافیت، زاویه تماس، مقاومت کششی، میزان کشش تا نقطه پارگی و کمترین حلالیت، تورم و نفوذپذیری به بخار محاسبه گردید. پس از برازش مدل ها، نتایج نشان داد که تأثیر عصاره آبی ریشه گیاه چوبک و نانوامولسیون اسانس رزماری بر تمام پاسخ‌ها معنی‌دار (P<0.05) بود. افزایش عصاره آبی ریشه گیاه چوبک و نانوامولسیون اسانس رزماری باعث افزایش ضخامت، زاویه تماس و میزان کشش تا نقطه پارگی و کاهش محتوای رطوبتی، نفوذپذیری به بخار، شفافیت، حلالیت، مقاومت کششی و تورم گردید. بر اساس نتایج حاصل از پیش‌بینی مدل و مقایسه آن با مقادیر تجربی، عصاره آبی ریشه گیاه چوبک در غلظت 2 درصد و نانوامولسیون اسانس رزماری با غلظت 77/0 درصد، به عنوان مقادیر بهینه به دست آمدند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of biodegradable film production containing aqueous extract of Chubak root and nanoemulsion of rosemary essential oil based on gelatin by response surface methodology

نویسندگان English

fakhri shahidi 1
Mohammad Maleki 2
Sahar Roshank 3
Mahmood Alizadeh-Sani 4
1 Professor, Department of Food Science & Technology, Ferdowsi University of Mashhad, Mashhad, Iran,
2 . Ph.D, Department of Food Hygiene and Aquaculture, Factulty of Veterinary Medicine, , Ferdowsi University of Mashhad (FUM), POBox: 9177948974, Mashhad, Iran
3 Ph.D. student, Department of Food Science & Technology, Ferdowsi University of Mashhad, Mashhad, Iran
4 . Ph.D. student, Student’s Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
چکیده English

In this study, different concentrations of aqueous extract of Chubak root (at levels of zero, 0.5, 1, 1.5, and 2%) with different concentrations of rosemary essential oil nanoemulsion (zero, 0.5, 1, 1.5, and 2%) was used to optimize the production of biodegradable gelatin-based film. Test responses were statistically significant for all fitted regression models at 99% confidence level. To optimize film production, maximum transparency, contact angle, tensile strength, Elongation at Brake to the point of rupture and minimum solubility, swelling and vapor permeability were evaluating. After fitting the models, the results showed that the effect of aqueous extract of Chubak root and rosemary essential oil nanoemulsion on all responses was significant (P <0.05). Increasing the aqueous extract of Chubak root and nanoemulsion of rosemary essential oil increased the thickness, contact angle and Elongation at Brake to the point of rupture and decreased moisture content, vapor permeability, transparency, solubility, tensile strength and swelling. Based on the results of model prediction and comparison with experimental values, aqueous extract of Chubak root at a concentration of 2% and nanoemulsion of rosemary essential oil with a concentration of 0.77% were obtained as optimal values.

کلیدواژه‌ها English

Biodegradable Films
Chubak
Rosemary essential oil
1- Villalobos-Delgado, L. H., Nevárez-Moorillon, G. V., Caro, I., Quinto, E. J., & Mateo, J. (2019). Natural antimicrobial agents to improve foods shelf life. In Food Quality and Shelf Life (pp. 125-157). Academic Press.
2- Nasery, M., Hassanzadeh, M. K., Najaran, Z. T., & Emami, S. A. (2016). Rose (Rosa× damascena Mill.) essential oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 659-665). Academic Press.
3- Pellá, M. C., Silva, O. A., Pellá, M. G., Beneton, A. G., Caetano, J., Simões, M. R., & Dragunski, D. C. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chemistry, 309, 125764.
4- Pirsa, S., Farshchi, E., & Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO 2–Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163.
5- Asadi, S., & Pirsa, S. (2020). Production of biodegradable film based on polylactic acid, modified with lycopene pigment and TiO 2 and studying its physicochemical properties. Journal of Polymers and the Environment, 28(2), 433-444.
6- Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
7- Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT, 117, 108617.
8- Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I., & Mohammadi, R. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules, 104, 687-707.
9- Hassanzad Azar, H., Ghafari, A., Yousefizadeh, S., Fathollahi, M., & Aminzare, M. (2019). Antimicrobial Effects of the Nanoemulsion of Rosemary Essential Oil against Important Foodborne Pathogens. Journal of Human, Environment, and Health Promotion.
10- Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A., & Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47, 168-177.
11- Ceylan, Z., Meral, R., Kose, S., Sengor, G., Akinay, Y., Durmus, M., & Ucar, Y. (2020). Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets. LWT, 134, 109965.
12- Martin‐Piñero, M. J., García, M. C., Santos, J., Alfaro‐Rodriguez, M. C., & Muñoz, J. (2020). Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. Journal of the Science of Food and Agriculture, 100(10), 3886-3894.
13- Moghimipour, E., Jasemnezhad, M., Mohammad Soleymani, S., & Salimi, A. (2021). Preparation and evaluation of a free surfactant herbal shampoo with Acanthophyllum Squarrosum Saponins. Journal of Cosmetic Dermatology, 20(1), 181-187.
14- Najjar-Tabrizi, R., Javadi, A., Sharifan, A., Chew, K. W., Lay, C. H., Show, P. L., ... & Berenjian, A. (2020). Hydrothermally extraction of saponin from Acanthophyllum glandulosum root–Physico-chemical characteristics and antibacterial activity evaluation. Biotechnology Reports, 27, e00507.
15- Hashtjin, A. M., & Abbasi, S. (2015). Nano-emulsification of orange peel essential oil using sonication and native gums. Food Hydrocolloids, 44, 40-48.
16- van Riel, N. A. (2006). Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in bioinformatics, 7(4), 364-374.
17- Eshagh, S., Abbaspour-Fard, M. H., Hosseini, F., & Tabasizadeh, M. (2020). Effect of Zinc Oxide Nanoparticles on Mechanical, Thermal and Biodegradability of Gelatin-Based Biocomposite Properties Films. IRANIAN JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY (PERSIAN),[online], 32(5), 411-426.
18- Azarifar, M., Ghanbarzadeh, B., Khiabani, M. S., Basti, A. A., Abdulkhani, A., Noshirvani, N., & Hosseini, M. (2019). The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohydrate Polymers, 208, 457-468.
19- Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198.
20- Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379-385.
21- Akhtar, H. M. S., Riaz, A., Hamed, Y. S., Abdin, M., Chen, G., Wan, P., & Zeng, X. (2018). Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. International Journal of Biological Macromolecules, 118, 469-477.
22- Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277-283.
23- Srinivasa, P. C., Ramesh, M. N., & Tharanathan, R. N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids,21(7), 1113-1122.
24- Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., ... & Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547-555.
25- Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 33(1), 229-235.
26-Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chemistry, 136(3-4), 1490-1495.
27-Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules, 62, 500-507.
28- Hazirah, M. N., Isa, M. I. N., & Sarbon, N. M. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Lif, 9, 55-63.
29-Khezerlou, A., Ehsani, A., Tabibiazar, M., & Moghaddas Kia, E. (2019). Development and characterization of a Persian gum–sodium caseinate biocomposite film accompanied by Zingiber officinale extract. Journal of Applied Polymer Science, 136(12), 47215.
30- Hu, D., Wang, H., & Wang, L. (2016). Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT-Food Science and Technology, 65, 398-405.
31- Ebrahimzadeh, S., Ghanbarzadeh, B., & Hamishehkar, H. (2016). Physical properties of carboxymethyl cellulose based nano-biocomposites with Graphene nano-platelets. International Journal of Biological Macromolecules, 84, 16-23.