تأثیر روغن های خرفه و تخم کتان بر ویژگی‌های فیزیکوشیمیایی و حسی ماست

نویسندگان
1 کارشناس ارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد ورامین – پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.
2 استادیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد ورامین – پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.
3 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد ورامین – پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران.
چکیده
 !

"#$

%&'

 !"#$%&'

&(!#()#*$((+!'&,%-((.((/((0

1234$((5)&(( 6((((+((7(((((((&#8((+

&( 6/#81#(79(:;<=/#0- '>?

@'ABCDE:CDF:G@'AB$5)/HICDE:CDF:GJ,HI

K1LM" ((+<#8#((-"#((N'((!O=!

>P23Q# =#!0' +R(+&7

&5$S2(3($8(:($5)& 6/#81#7

0-8 T-23$8&-&5T-((+<##!U#

V7:'>$5)(& 6/!?&5($S(#-"#8

;5pH((&(('((((!((2$8((W((S6:&#;#8 

@--ECDEXp((3$8((((#((-"#8 ((+<#1# L!0H

@((S((Y((Z([((((ECDE˃p&(('((N((1##((!0H

$5)& 6/#81#7$8&$5

&'](5=O#$8YJ^&(&53:'-

@$S6!-&ECDEXp$((S8(('N#!0H

^87&$5)& 6/5&5CDFGJ((?:#81#((7((^

0"_#N+<#Y!((&((5' +(&_$B5L&

NB5[#=CDE($(%&(((-!]& 6/!^

0-2
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Effect of Purslane and Flaxseed Oil on Yogurt Physicochemical and Organoleptic Characteristics

نویسندگان English

Ahmad Jadidi 1
shila berenjy 2
Leila Nateghi 3
1 Graduated
2 Academic member of faculty
3 Academic member of faculty
چکیده English

Yogurt as a member of fermented food family has been considered an appropriate food system in order to transfer nutraceutical and plant extracts in daily consumption. Thereupon omega-3 fatty acids of plants oil including Purslane and flax seeds oil could be suitable targets to produce functional yogurts. The purpose of this study was to study the effect of the addition of Purslane Oil and Flaxseed Oil on Yogurt Physicochemical and Organoleptic Characteristics. In this study, the effect of using Purslane Oil Concentrations (0/5%, 1/5%, 2%) and Flaxseed Oil Concentrations (0/5%, 1/5%, 2%) individually and simultaneously on Yogurt Physicochemical and Organoleptic Characteristics at 4 C and over time intervals. The evaluation of fatty acid profiles showed that the replacement of Purslane Oil and Flaxseed Oil in treatments reduced the amount of saturated fatty acids and increased the amount of unsaturated fatty acids. The obtained results physicochemical properties demonstrate that application of Purslane and flax seeds oil led to a significant reduction in pH and enhancement in acidity values (p≤0.05). While crude fat and dry matter content of treatments didn’t alter significantly (p>0.05). While crude fat and dry matter content of treatments didn’t alter significantly. On the other hand oxidative sensibility of treatments showed a reverse correlation with Purslane and flax seeds oil substitution, so that all the samples had a far higher proxide values than control sample (p≤0.05). In addition, sensorial investigation of samples implied the fact that Purslane and flax seeds oil usage doesn’t change the organoleptic features (except in 1.5 and 2 percent substitution) which is eventually caused greater acceptance of treatment with 0.5 percent Purslane oil than control and selected as the best treatment

کلیدواژه‌ها English

Purslane Oil
Flaxseed oil
Yogurt
[1] Capela, P., Hay, T.K.C., Shah, N.P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203-211.
[2] Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Science and Technology, 39(10), 1221-1227.
[3] Parsa, P., Alizade Khaled abadi, M., Zadbari, M., Akbarian Mogari, M. (2011). Optimizing the production conditions of phytosterol-enriched probiotic yogurt. Master's Degree in Food Science and Technology Engineering. Urmia University, p. 0-4 (in Persian).
[4] Nettleton, J.A. (1991). Omega-3 fatty acids: comparison of plant and seafood sources in human nutrition. Journal of the American Dietetic Association, 91(3), 331-337.
[5] Diederichsen, A., Raney, J. P., Fu, Y. B., & Richards, K. W. (2002). Diversity in the flax collection at Plant Gene Resources of Canada. Proceedings of the 59th flax institute of the United States, 21-23.
[6] Uddin, M., Juraimi, A.S., Hossain, M. S., Un, A., Ali, M., & Rahman, M. M. (2014). Purslane weed (Portulaca oleracea): a prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes. The Scientific World Journal, 2014.
[7] Simopoulos, A.P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3), 128.
[8] Bashash aliabadi, F., Fadei nogani, V., Fahim danesh, M. (2015). The effect of purple tree on physiochemical properties is the antioxidant and sensory properties of our fluid. Journal of Food Science and Technology, 7(4), 106-116.
[9] Award, J. Dawkins, N.L., Shikany, J. and Pace, R.D. (2009). Boost for purslane. FPD-Health And Wel ness, pp: 58-60.
[10] Carter, J. F. (1993). Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal foods world (USA).
[11] Alirezalo, K., Hesari, J., Sadeghi, M.H., Bak mohammadpour, M. (2016). Examine the production of ultra-rich colored yogurt with blackberries and carrots. Journal of Food Technology, 3(10), 53-64 (in Persian).
[12] Ejtahed, H. S., Mohtadi-Nia, J., Homayouni-Rad, A., Niafar, M., Asghari-Jafarabadi, M., Mofid, V., & Akbarian-Moghari, A. (2011). Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. Journal of dairy science, 94(7), 3288-3294.
[13] Institute of Standards and Industrial Research of Iran. (1385). Measurement of PH and acidity in Milk and its products. Iranian National Standard No. 2852 (in Persian).
[14] McNamara, S., O’mara, F. P., Rath, M., & Murphy, J. J. (2003). Effects of different transition diets on dry matter intake, milk production, and milk composition in dairy cows. Journal of dairy science, 86(7), 2397-2408.
[15] Dabora, S. A. M. A. (2016). Assessment of the effect of addition of Baobab (Adansonia digitata L.) fruit pulp on properties of camel milk yoghurt (Doctoral dissertation, Sudan University of Science and Technology).
[16] Shantha, N. C., & DECKER, E. A. (1994). Rapid, sensitive, iron-based spectrophotometric methods for determination of perorlride values of food lipids. Food Composition and Additives, 77(2), 421-424.
[17] Sah, B.N.P., Vasiljevic, T., McKechnie, S., & Donkor, O.N. (2016). Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. Journal of food science and technology, 53(3), 1698-1708.
[18] Yoon, M. R., Seo, J. Y., Ryu, G. E., Kim, Y. H., Seo, M. C., & Chang, Y. H. (2016). Physicochemical, Microbial, Rheological, and Sensory Properties of Yogurt Added with Yuza Pectin Extract. Journal of the Korean Society of Food Science and Nutrition, 45(4), 562-568.
[19] Mousavi, S. R. J., & Niazmand, R. (2017). Fatty Acids Composition and Oxidation Kinetic Parameters of Purslane (Portulaca oleracea) Seed Oil. Agricultural Research, 6(4), 421-426.
[20] Lewinska, A., Zebrowski, J., Duda, M., Gorka, A., & Wnuk, M. (2015). Fatty acid profile and biological activities of linseed and rapeseed oils. Molecules, 20(12), 22872-22880.
[21] Lane, K. E., Li, W., Smith, C., & Derbyshire, E. (2014). The bioavailability of an omega‐3‐rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. International journal of food science & technology, 49(5), 1264-1271.
[22] Caldeo, V., Hannon, J. A., Hickey, D. K., Waldron, D., Wilkinson, M. G., Beresford, T. P., & McSweeney, P. L. (2016). Control of oxidation-reduction potential during Cheddar cheese ripening and its effect on the production of volatile flavour compounds. Journal of Dairy Research, 83(4), 479-486.
[23] Ozcan, T., Horne, D. S., & Lucey, J. A. (2015). Yogurt made from milk heated at different pH values. Journal of dairy science, 98(10), 6749-6758.
[24] He, Z., Chen, J., Moser, S. E., Jones, O. G., & Ferruzzi, M. G. (2016). Interaction of β‐casein with epigallocatechin‐3‐gallate assayed by fluorescence quenching: effect of thermal processing temperature. International journal of food science & technology, 51(2), 342-348.
[25] Kareb, O., Champagne, C.P., Jean, J., Gomaa, A., & Aïder, M. (2018). Effect of electro-activated sweet whey on growth of Bifidobacterium, Lactobacillus, and Streptococcus strains under model growth conditions. Food Research International, 103, 316-325.
[26] Labropoulos, A. E., Palmer, J. K., and Lopez, A. (1981). Whey protein denaturation of UHT processed milk and its effect on rheology of yogurt.Journal of texture studies, 12(3), 365-374.
[27] Shakerian, M., Hadi Razavi, S., Khodaiyan, F., Ziai, S. A., Saeid Yarmand, M., & Moayedi, A. (2014). Effect of different levels of fat and inulin on the microbial growth and metabolites in probiotic yogurt containing nonviable bacteria. International journal of food science & technology, 49(1), 261-268.
[28] Alam, M. M., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2014). Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports, 8(3), 279-293.
[29] Flachs, P., Horakova, O., Brauner, P., Rossmeisl, M., Pecina, P., Franssen-van Hal, N., ... & Keijer, J. (2005). Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia, 48(11), 2365-2375.
[30] Ghorbani-HasanSaraei, A., Shahidi, F., Ghoddusi, H. B., Motamedzadegan, A., Varidi, M. (2015). Oxidative stability of enriched yoghurts with different omega 3 sources during storage. Specialty of Food Science and Technology, 1(13), 165-179 (in Persian).
[31] Moschakis, T., Dergiade, I., Lazaridou, A., Biliaderis, C. G., & Katsanidis, E. (2017). Modulating the physical state and functionality of phytosterols by emulsification and organogel formation: Application in a model yogurt system. Journal of Functional Foods, 33, 386-395.
[32] Akin, Z., & Ozcan, T. (2017). Functional properties of fermented milk produced with plant proteins. LWT-Food Science and Technology, 86, 25-30.