[1] Officer, P. (2016). Food and agriculture organization of the United Nations. FAO, Italy.
[2] Lee, S. H., Goëau, H., Bonnet, P., & Joly, A. (2020). New perspectives on plant disease characterization based on deep learning. Computers and Electronics in Agriculture, 170, 105220
[3] Lee, H. Y., Kim, D. H., & Park, K. R. (2019). Pest diagnosis system based on deep learning using collective intelligence. The International Journal of Electrical Engineering & Education, 0020720919833052.1-15.
[4] Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE computational intelligence magazine, 5(4), 13-18.
[5] Turkoglu, M., Hanbay, D., & Sengur, A. (2019). Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests. Journal of Ambient Intelligence and Humanized Computing, 1-11.
[6] Sepasi, M., Damavandian, M. R., & Amiri Besheli, B. (2019). Mineral oil barrier is an effective alternative for suppression of damage by white snails. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(2), 114-120.
[7] Kheirodin, A., Damav, M. R., & Sarailoo, M. H. (2012). Mineral oil as a repellent in comparison with other control methods for citrus brown snail, Caucasotachea lencoranea. African Journal of Agricultural Research, 7(42), 5701-5707.
[8] Abu-Saqer, M. M., Abu-Naser, S. S., & Al-Shawwa, M. O. (2020). Type of Grapefruit Classification Using Deep Learning.
[9] Zheng, Y. Y., Kong, J. L., Jin, X. B., Wang, X. Y., Su, T. L., & Zuo, M. (2019). CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors, 19(5), 1058.
[10] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
[11] Karabag, C., Verhoeven, J., Miller, N., & Reyes-Aldasoro, C. C. (2019). Texture Segmentation: An Objective Comparison between Traditional and Deep-Learning Methodologies. Preprints.
[12] Sun, X., Wu, P., & Hoi, S. C. (2018). Face detection using deep learning: An improved faster RCNN approach. Neurocomputing, 299, 42-50.
[13] Majumder, A., Behera, L., & Subramanian, V. K. (2016). Automatic facial expression recognition system using deep network-based data fusion. IEEE transactions on cybernetics, 48(1), 103-114.
[14] Ashqar, B. A., Abu-Nasser, B. S., & Abu-Naser, S. S. (2019). Plant Seedlings Classification Using DeepLearning.
[15] Marani, R., Milella, A., Petitti, A., & Reina, G. (2019). Deep learning-based image segmentation for grape bunch detection. In Precision agriculture’19 (pp. 3320-3328). Wageningen Academic Publishers.
[16] Fooladi, S., Farsi, H., & Mohamadzadeh, S. (2019). Detection and classification of skin cancer using deep learning. J Birjand Univ Med Sci, 26(1), 44-53.
[17] Rangarajan, A. K., Purushothaman, R., & Ramesh, A. (2018). Tomato crop disease classification using pre-trained deep learning algorithm. Procedia computer science, 133, 1040- 1047.
[18] Too, E. C., Yujian, L., Njuki, S., & Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161, 272-279.
[19] Barbedo, J. G. A. (2019). Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering, 180, 96-107.
[20] Tavakoli, N., Hemmat, A., & Nazari, B. (2013). Preventing spread of downy mildew in greenhouse cucumber with machine vision system. In Proceeding of National Conference of Passive Defense in Agriculture.
[21] Xing, S., & Lee, M. (2020). Classification Accuracy Improvement for Small-Size Citrus Pests and Diseases Using Bridge Connections in Deep Neural Networks. Sensors, 20(17), 4992.
[22] da Costa, A. Z., Figueroa, H. E., & Fracarolli, J. A. (2020). Computer vision based detection of external defects on tomatoes using deep learning. Biosystems Engineering, 190, 131-144.
[23] Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M. (2018). Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones, 2(4), 39.
[24] Sowmya, G., & Srikanth, J. (2017). Automatic weed detection and smart herbicide spray robot for corn fields. Int J Sci Eng Technol Res, 6(1), 131-137.
[25] Postalcıoğlu, S. (2020). Performance Analysis of Different Optimizers for Deep Learning-Based Image Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 34(02), 2051003.
[26] Alruwaili, M., Alanazi, S., Abd El-Ghany, S., & Shehab, A. (2019). An Efficient Deep Learning Model for Olive Diseases Detection.
[27] Luaibi, A. R., Salman, T. M., & Miry, A. H. (2020). Detection of citrus leaf diseases using a deep learning technique. International Journal of Electrical and Computer Engineering (IJECE).
Vol. 11, No. 2, pp. 1719~1727
[28] Barman, U., Choudhury, R. D., Sahu, D., & Barman, G. G. (2020). Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease. Computers and Electronics in Agriculture, 177, 105661.
[29] Tetila, E. C., Machado, B. B., Astolfi, G., de Souza Belete, N. A., Amorim, W. P., Roel, A. R., & Pistori, H. (2020). Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179, 105836.
[30] Liu, B., Ding, Z., Tian, L., He, D., Li, S., & Wang, H. (2020). Grape leaf disease identification using improved deep convolutional neural networks. Frontiers in Plant Science, 11, 1082.
[31] Miao, R. H., Tang, J. L., & Chen, X. Q. (2015). Classification of farmland images based on color features. Journal of Visual Communication and Image Representation, 29, 138-146.
[32] Hernández-Hernández, J. L., García-Mateos, G., González-Esquiva, J. M., Escarabajal-Henarejos, D., Ruiz-Canales, A., & Molina-Martínez, J. M. (2016). Optimal color space selection method for plant/soil segmentation in agriculture. Computers and Electronics in Agriculture, 122, 124-132.
[33] Liu, X., Zhao, D., Jia, W., Ruan, C., Tang, S., & Shen, T. (2016). A method of segmenting apples at night based on color and position information. Computers and Electronics in Agriculture, 122, 118-123.
[34] Ali, M. M., Hashim, N., & Hamid, A. S. A. (2020). Combination of laser-light backscattering imaging and computer vision for rapid determination of oil palm fresh fruit bunches maturity. Computers and Electronics in Agriculture, 169, 105235.
[35] Polder, G., van der Heijden, G. W., van Doorn, J., & Baltissen, T. A. (2014). Automatic detection of tulip breaking virus (TBV) in tulip fields using machine vision. Biosystems Engineering, 117, 35-42.
[36] Nguyen, H. D. D., Pan, V., Pham, C., Valdez, R., Doan, K., & Nansen, C. (2020). Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Computers and Electronics in Agriculture, 173, 105458.
[37] Askari Asli-Ardeh, E., Larijani, M. R., Loni, R. (2020). Diagnosis of Rice Blast Disease in Different Environmental Conditions using Image Processing Technique. Journal of Food Science & Technology. JFST No 100, Vol 17. 17- 28.
[38] Kathuria, A. (2018). Intro to optimization in deep learning: Momentum, rmsprop and adam.
[39] Keskar, N. S., & Socher, R. (2017). Improving generalization performance by switching from adam to sgd. arXiv preprint arXiv:1712.07628.
[40] Fooladi, S., Farsi, H., & Mohamadzadeh, S. (2019). Detection and classification of skin cancer using deep learning. J Birjand Univ Med Sci, 26(1), 44- 53.
[41] Karabayir, I., Akbilgic, O., & Tas, N. (2020). A Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO). IEEE Transactions on Neural Networks and Learning Systems.
[42] Çarkacı, N. (2018). Derin Öğrenme Uygulamalarında En Sık kullanılan Hiper-parametreler.
[43] Saleem, M. H., Potgieter, J., & Arif, K. M. (2020). Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers. Plants, 9(10), 1319.
[44] Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Zhang, Y. D. (2020). Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks. Scientia Horticulturae, 263, 109133
[45] Bhusal, S., Bhattarai, U., & Karkee, M. (2019). Improving Pest Bird Detection in a Vineyard Environment using Super-Resolution and Deep Learning. IFAC-PapersOnLine, 52(30), 18-23.
[46] Abdullahi, H. S., Sheriff, R., & Mahieddine, F. (2017). Convolution neural network in precision agriculture for plant image recognition and classification. In International Conference Seventh on Innovative Computing Technology (INTECH) (Vol. 10).