[1] Farhoosh, R., Tavakoli, J., Haddad Khodaparast, M.H., 2008. Chemical composition and oxidative stability of kernel oils from two current subspecies of Pistacia atlantica in Iran. Journal American Oil Chemical Society, 85:723–729.
[2] Tavakoli, J., Hamedani, F., Haddad Khodaparast, M.H., 2016. Investigating chemical properties and oxidative stability of kernel Oil from P.khinjuk growing wild in Iran. Journal American Oil Chemical Society, 93:681–687.
[3] Tavakoli, J., Haddad Khodaparast, M.H., 2013. Chemical properties of the oil from P.khinjuk fruits growing wild in Iran. Journal of Chemistry of Natural Compounds, 49: 803–810.
[4] Tavakoli, J., Brewer, M. S., Zarei Jelyani, A., Estakhr, P., 2017. Oxidative stability of olive oil during the thermal process: Effect of Pistacia khinjuk fruit oil. International Journal of Food Properties, 20: 3256–3265.
[5] Tavakoli, J., Estakhr, P., Zarei Jelyani, A., 2017. Effect of unsaponifiable matter extracted from Pistacia khinjuk fruit oil on the oxidative stability of olive oil. Journal of Food Science & Technology, 54:2980–2988.
[6] Hatamnia, A. A., Rostamzad, A., Malekzadeh, P., Darvishzadeh, R., Abbaspour, N., Hosseini, M., Nourollahi, K., Mehr, R. S. A., 2016. Antioxidant activity of different parts of Pistacia khinjuk Stocks fruit and its correlation to phenolic composition. Natural Product Research, 30:1445–1450.
[7] Azadpour, M., Rezaei, M., Taati, M., Ghasemi Dehnoo, M., Ezatpour, B., 2015. Antioxidant, antibacterial, and wound-healing properties of methanolic extract of Pistacia khinjuk. Comparative Clinical Pathology, 24: 379-385.
[8] Wang, L., Weller, C. L., 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Science & Technology, 17: 300-312.
[9] Rajaee, A., Mirzaee Moghaddam, H.,Baradaran, N., 2017. Optimization of Phenolic Compounds and antioxidant activity of the extract of Ziziphora clinopodioides using ultrasound-assisted extraction whit response surface methodology. Journal of Food Science & Technology,14: 237-248.
[10] Fellows, p., 2000. Food processing technology. 2th ed. CRC press. Boca Raton Boston new York Washington, DC.
[11] Hashemi, S.M.B., Mousavi Khaneghah, A., Akbarirad, H., 2016. The Effects of Amplitudes ultrasound-assisted solvent extraction and pretreatment time on the yield and quality of Pistacia khinjuk hull oil. Journal of oleo science, 65: 733-738.
[12] Tavakoli, J., Khani, J., Shahroozi, M., 2019. Investigating the effect of extracts from the germs of different wheat cultivars (usual and under the ultrasonic process) in oxidative stability of soybean oil. Journal of Food Science & Technology, 88: 97-107.
[13] Martins, A.C., Bukman, L., Vargas, A.M., Barizão, É.O., Moraes, J.C., Visentainer, J.V., Almeida, V.C., 2013. The antioxidant activity of teas measured 1 by the FRAP method adapted to the FIA system: Optimising the conditions using the response surface methodology. Food Chemistry, 138: 574-580.
[14] Brito Maia Miamoto, J.D., Aazza, S., Ruas, N.R., Alves de Carvalho, A., Brasil Pereira Pinto, J.E., Resende, L.V., Vilela Bertolucci, S.K., 2020. Optimization of the extraction of polyphenols and antioxidant capacities from two types of Solanum gilo Raddi using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 16. https://doi.org/10.1016/j.jarmap.2019.100238
[15] Lopez, A., Rico, M., Rivero, A., & Tangil, D. M. S., 2011. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry, 125:1104-1109.
[16] Estakhr, P., Tavakoli, J., Beigmohammadi, F., Alaee, Sh., 2019. Optimization of antioxidant activity of Ferula persica by Ultrasound waves using various ratios of ethanol-water solvent at different temperatures whit Response Surface Methodology. Journal of Food Science & Technology, 16: 291-303.
[17] Liyana-Pathirana, C., Shahidi, F., 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chemistry, 93: 47–56.
[18] Ghafoor, K., Choi, Y.H., Jeon, J. Y., Jo, I.H., 2009. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds. Agricultural & Food Chemistry, 57: 4988–4994.
[19] Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, R., 2015. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184: 80-89.
[20] Sfahlan, A. J., Mahmoodzadeh, A., Hasanzadeh, A., Heidari, R., Jamei, R., 2009. Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chemistry, 115: 529-533.
[21] Yim, H. S., Chye, F. Y., Koo, S. M., Matanjun, P., How, S. E., Ho, C. W., 2012. Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food & Bioproducts Processing, 90: 235-242.
[22] Razali, N., Mat-Junit, S., Abdul-Muthalib, A. F., Subramaniam, S., Abdul-Aziz, A., 2012. Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of amarindus indica L. Food Chemistry, 131: 441-448.
[23] Tavakoli, J., Hajpour Soq, K. H., Yousefi, A. R., Estakhr, P., Dalvi, M., Mousavi Khaneghah, A., 2019. Antioxidant activity of Pistacia atlantica var mutica kernel oil and it’s unsaponifiable matters. Journal of Food Science & Technology, 56: 5336–5345.
[24] Myers, R. H., Montgomery, D. C., Anderson-Cook, Ch.K., 2016. Response Surface Methodology: Process and Product Optimization Using Design Experiment s. 4nd Edition. John Wiley & Sons, New York.
[25] Hossain, M.B., Brunton, N.P., Patras, A., Tiwari, .,O’Donnell, C.P., Martin-Diana, A.B., Barry-Ryan, C., 2012. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics Sonochemistry, 19: 582-590.
[26] Pinelo, M., Rubilar, M., Jerez, M., Sinero, J., Núñez, M. J., 2005. Effect of solvent temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agriculture and Food Chemistry, 53: 2111-2117.
[27] Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X., 2008. Optimisation of ultrasoundassisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106: 804-810.
[28] Ya-Qin, M., Jian-Chu, C., 2009. Simultaneous extraction of phenolic compound of citrus peel extracts:Effect of ultrasound. Ultrasonics Sonochemistry. 16: 57-62.
[29] Rahimi-Panah, M., Hamedi, M., Mirzapour, M., 2010. Antioxidant activity and phenolic contents of Persian walnut (Juglans regia L.) green husk extract. African Journal of Food Science & Technology , 1: 105-111.
[30] Silva, E. M., Roges, H., Larondelle, Y., 2007. Optimization of extraction of phenolics from inga edulis leaves using response surface meyhodology. Journal of Separation and Purification Technology, 55: 381-387.
[31] Tabaraki, R., Nateghi, A., 2011. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics Sonochemistry, 18: 1279–1286.
[32] Heydari, Majd., M, Rajaei., A, Salar Bashi., D, Mortazavi, S. A., Bolourian, S., 2014. Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine ennyroyal (Phlomidoschemaparviflorum) leaves usingresponse surfacemethodology. Industrial Crops & Products, 57: 195–202.
[33] Pérez-Jiménez, J., Torres, J.L., 2011. Analysis of nonextractable phenolic compounds in foods: the current state of the art. Journal of Agricultural & Food Chemistry, 59: 12713-12724.
[34] Mobasseri, N., Esmaielzadeh Kenari, R., Razavi, R. (2020). Investigation of antioxidant properties of free and bounded phenol of kiwi fruit peel extract and its nanocapsules properties. Iranian Journal of Biosystems Engineering, 55: 211-222.
[35] EsmaeilzadehKanari, R., Raftani Amiri, Z., Motamedzadegan, A., Mohammadzadeh Milani, J., Farmani, J., Farahmandfar, R. (2020). Optimization of Iranian Golpar (Heracleumpersicum) extract encapsulation using sage (Salvia macrosiphon) seed gum: Chitosan as a wall materials and its antioxidant activity to the shelf life of soybean oil during storage conditions in free and encapsulated forms. Journal of Food Measurement and Characterization, 14: 2828–2839.
[36] Ilaiyaraja, N., Likhith, K., Babu, G.S., & Khanum, F. 2015. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chemistry, 173: 348–354.
[37] Morelli, L., Prado, M. A., 2012. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrasonics Sonochemistry, 19: 1144-1149.
[38] Şahin, S., Şaml, R., 2013. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 20, 595-602.
[39] Moyo, S., Gashe, B., Collison, E., Mpuchane, S., 2003. Optimising growth conditions for the pectinolytic activity of Kluyveromyces wickerhamii by using response surface methodology. International Journal of Food Microbiology, 85: 87-100.
[40] Chen, W., Huang, Y., Qi, J., Tang, M., Zheng, Y., Zhao, S., Chen, L., 2014. Optimization of ultrasound‐assisted extraction of phenolic compounds from Areca Husk. Food Processing & Preservation, 38: 90-96.
[41] Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., Segura-Carretero, A., 2015. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops & Products, 66: 246-254.
[42] Khoo, H.E., Azlan, A., Ismail, A., Abas, F., 2013. Response surface methodology optimization for extraction of phenolics and antioxidant capacity in Defatted dabai parts. Sains Malaysiana, 42: 949–954.
[43] Taghvaei, M., Jafari, S.M., Assadpoor, E., Nowrouzieh, Sh., & Alishah, O., 2012. Optimization of microwave-assisted extraction of cottonseed oil and evaluation of its oxidative stability and physicochemical properties. Food Chemistry, 160: 90-97.