تولید نانوحامل حاوی عصاره Cornus mas (زغال اخته) و ارزیابی رهایش ترکیبات زیست فعال ریز پوشانی شده در شرایط شبیه سازی شده گوارشی

نویسندگان
1 دانشگاه ازاد تبریز
2 دانشگاه علوم پزشکی تبریز
3 دانشگاه تبریز
چکیده
چکیده

ترکیبات زیست فعال میوه زغال اخته به عنوان آنتی اکسیدان­های قدرتمند شناخته شده اند. پایداری این ترکیبات و سایر عصاره‏های آنتوسیانینی بسیار حایز اهمیت بوده و درون پوشانی روشی مناسب برای افزایش پایداری این ترکیبات می­باشد بطوریکه باعث افزایش کاربرد ترکیبات زیست فعال در زمینه­های غذایی، دارویی و آرایشی می­گردد. در این تحقیق، فعالیت آنتی­اکسیدانی ترکیبات زیست فعال محصور شده عصاره استخراجی زغال اخته توسط نانوکیوبوزوم‌های پوشش داده شده با روکش روده­ای و رهایش آن در شرایط شبیه سازی شده محیط‌های گوارشی بررسی شد. عصاره استخراجی به دو شکل ، درون پوشانی شده در نانو کیوبوزوم‌هایی با روکش روده­ای و عصاره آزاد، برای تعیین اثر حفاظتی درون پوشانی بر روی ثبات ترکیبات فنولی و آنتی اکسیدان­ها مورد مطالعه قرار گرفت. بر اساس نتایج به دست آمده میانگین اندازه ذرات و مقدار زتا پتانسیل نانو کیوبوزومها به ترتیب4 ± 3/49 نانومتر و 5± 16- میلی ولت بود. همچنین نتایج FTIR نشان داد که هیچگونه بر همکنشی بین عصاره زغال اخته و نانوکیوبوزومها صورت نگرفته است عصاره فقط بصورت فیزیکی درون آنها قرار گرفته است.



واژگان کلیدی: آنتی­ اکسیدان، نانو کیوبوزوم، ترکیبات زیست فعال، زغال اخته، پلی فنل ها، برون تنی
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of Cornus mas extract nano carrier and release evaluation of nano encapsulated ‘ bioactive compounds in semi digestive condition

نویسندگان English

zarin radbeh 1
Narmela Asefi 1
Hamed Hamishehkar 2
Liela Rofegarinejad 1
AKRAM PEZESHKI 3
1 azad university of tabriz
2 Tabriz University of Medical Sciences
3 tabriz university
چکیده English

Abstract



The bioactive compounds of Cornus mas are known as powerful antioxidants. The stability of polyphenols extract is very important and encapsulating is a good technique to increase their stability by increasing the use of bioactive compounds in food and medicine. In this research the antioxidant activity of encapsulated bioactive compounds of cornus mas extract with enteric coated nanocubosomes and their release under semi-digestion conditions were evaluated. In order to determine the effect of encapsulation on the stability of phenolic compounds and their antioxidant activity, encapsulated extract into enteric coated nano-cubosoms and free extract were investigated. Characterization analysis of the mean particle size and zeta potential value of the nanocobosomes were reported to be 49.3 nm and -16 mV, respectively. The results of release studies showed that after 30 hours the secretion of Cornus mas extract at pH 1.2 (simulated gastric media) and pH 7.4 (simulated intestinal media) were about 38% and 61%, respectively. The FTIR results showed no interaction between the extract and cubosomes. Therefore Cornus mas extract retained its antioxidant activity.








کلیدواژه‌ها English

: Bioactive compounds
Antioxidant
Cornus mas
Nano-cubosomes
Polyphenols
Invitro
1. Guldiken, B., Gibis, M., Boyacioglu, D., Capanoglu, E., Weiss, J. 2018. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Research International. 108: 491–497.
2. De Moura, S.C.S.R., Berling, C.L., Germer, S.P.M., Alvim, I.D., Hubinger, M.D. 2018. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chemistry. 241: 317–327.
3. Hsieh,T.,Juan,G., Darzynkiewicz,Z. and Wu,J.M. 1999. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21 (WAF1/CIP1) and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G 2 . Cancer Res. , 59, 2596–2601.
4. Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., Zhou, J., 2017. Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology 311, 77–87.
5. De Biaggi, M., Donno, D., Mellano, M.G., Riondato, I., Rakotoniaina, E.N., Beccaro, G.L. 2018. Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components. Plant Foods for Human Nutrition. 73: 89–94.
6. Flores, F.P., Singh, R.K., Kerr, W.L., Phillips, D.R., Kong, F. 2015. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chemistry. 168: 225–232.
7. Babaloo, F., Jamei, R. 2018. Anthocyanin pigment stability of Cornus mas–Macrocarpa under treatment with pH and some organic acids. Food Science and Nutrition. 6: 168–173.
8. Kotla, N.G., Chandrasekar, B., Rooney, P., Sivaraman, G., Larrañaga, A., Krishna, K.V., Pandit, A., Rochev, Y. 2017. Biomimetic Lipid-Based Nanosystems for Enhanced Dermal Delivery of Drugs and Bioactive Agents. ACS Biomaterials Science and Engineering. 3: 1262–1272.
9. Kwon SH, Ahn IS, Kim SO, Kong CS, Chung HY, Do MS, Park KY. 2007.Anti-obesity and hypolipidemic effects of black soybean anthocyanins. Journal of Medicinal Food.;10:552-556]
10. Muhammad, F., Nguyen, T.D.T., Raza, A., Akhtar, B., Aryal, S. 2017. A review on nanoparticle-based technologies for biodetoxification. Drug and Chemical Toxicology. 40: 489–497. Pedreschi, F., Claudia, C., Moyano, P., & Troncoso, E. 2008. Oil distribution in potato slices during frying. Journal of Food Engineering, 87, 200-212.
11. Matloub, A.A., AbouSamra, M.M., Salama, A.H., Rizk, M.Z., Aly, H.F., Fouad, G.I. 2018. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharmaceutical Journal. 26: 224–231.
12. Wang, W., Jung, J., Zhao, Y. 2017. Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydrate Polymers. 157: 1246–1253.
13. Nielsen LH, Rades T, Boyd B, Boisen A. 2017, Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin.Eur J Pharm Biopharm.Sep;118:13-20. doi: 10.1016/j.ejpb.2016.12.008.
14. Wintola OA. and Afolayan AJ. 2011. Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill.Pharmacogn Mag. 7(28):325-33.
15. Saber, M. M. , Al-mahallawi, A. M. , Nassar, N. N. , Stork, B. and Shouman, S. A. 2018. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer. 18: 822
16. Ahirrao, M., Shrotriya, S. 2017. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Development and Industrial Pharmacy. 43: 1686–1693.
17. Mehta, R. , Chawla, A., Sharma,P. and Pawar, P. 2013. Formulation and in vitro evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug delivery system.J Adv Pharm Technol Res. 4(1): 31–41.
18. Conchillo, A., Ansorena, D. and Astiasaran, I. 2005. Intensity of lipid oxidation and formation of cholesterol oxidation products during frozen storage of raw and cooked chicken. J Sci Food Agric 85:141– 146
19. Ghorbanzade, T., Jafari, S.M., Akhavan, S., Hadavi, R. 2017. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry. 216: 146–152.
20. Babazadeh, A., Ghanbarzadeh, B., Hamishehkar, H. 2017. Phosphatidylcholine-rutin complex as a potential nanocarrier for food applications. Journal of Functional Foods. 33: 134–141.
21. Mishra, K., Ojha, H., Chaudhury, N.K. 2012. Estimation of antiradical properties of antioxidants using DPPH - assay: A critical review and results. Food Chemistry. 130: 1036–1043.
22. Zhao, L., Temelli, F., Chen, L. 2017. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods. 34: 159–167.
23. Liu C.-H, Wu C.-T. )2010.( Optimization of nanostructured lipid carriers for lutein delivery.  Colloids and Surfaces A Physicochemical and Engineering Aspects 353(2-3):149-156 ·   DOI: 10.1016/j.colsurfa.2009.11.006
24. Salem D.S., Sliem M.A., El-Sesy M., Shouman S.A., Badr Y.J.J.o.P. 2018. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles, P.B. Biology,182 92-99.
25. Danaei, E. A., Elias, R. J. McClements, D. J., 2018. Oxidation in foods andbeverages and antioxidantapplicationsVolume 1: Understanding mechanisms ofoxidation and antioxidant activity.Woodhead Publishing Limited, pp 345.
26. Mozafari, M. R.,Flanagan, J., Matia-Merino, L., Awati, A., Omri,A. Suntres, Z. E. and Singh, H.2018. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods Review. J Sci Food Agric (in press)
27. Adib Z.M., Ghanbarzadeh S.,. Kouhsoltani M, Khosroshahi A.Y., Hamishehkar H.J.A.p.b., 2016. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study, 6 31.
28. Gillet A., Compère P., Lecomte F., Hubert P., Ducat E., Evrard B., Piel G.J.I.j.o.p., 2011. Liposome surface charge influence on skin penetration behaviour, 411 223-231Fernandes FAN and Rodrigue S, 2008. Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Drying Technology, 26, 1509-1516.
29. Kamonpatana K, GiustiMM,Chitchumroonchokchai C, MorenoCruz M, RiedlKM,et al. 2012. Susceptibilityof anthocyanins to ex vivo degradation in human saliva. Food Chem. 135:738–47
30. Lila MA, Ribnicky DM, Rojo LE, Rojas-Silva P, Oren A, et al. 2012. Complementary approaches to gaugethe bioavailability and distribution of ingested berry polyphenolics. J. Agric. Food Chem. 60:5763–71
31. Homoki, W., Zhu Y, Li C . 2016. Effect of blueberry anthocyanins malvidin and glycosideson the antioxidant properties in endothelial cells. Oxidative Med Cell Longev. https://doi.org/10.1155/2016/1591803
32. Pool H., Quintanar D., J. de Dios Figueroa, C.M. Mano, J.E.H. Bechara, L.A. Godínez, S.J.J.o.n. Mendoza, 2012. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles, 86. 135:738–47
33. Harris R., Lecumberri E., Mateos-Aparicio I., Mengíbar M., Heras A.J.C.P., 2011. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis, 84 803-806.
34. Abdullah, S., Zainal Abidin, S. A., Murad, N. A., Makpol, S., Ngah W.Z. W.,Yusof, Y. A. M. 2010. Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. African Journal of Biochemistry Research Vol. 4(4), pp. 134-142
35. Sarabandi K., Mahoonak A.S., Akbari M.J.J.o.F.P.E., (2019) . Physicochemical properties and antioxidant stability of microencapsulated marjoram extract prepared by co‐crystallization method, 42 e12949.
36. توکلی پور حمید ، مختاریان محسن نانو ریزپوشانی روغن دانه انار با روش تعلیق مایع در مایع و رهایش روغن در محیط شبیه سازی شده معدهمجله علوم و تغذیه و صنایع غذایی ایرانسال یازدهم، شماره۲ ،۱۳۹۵، صفحات ۸۴-۷۵
37. Bolisetti1 S. S., Reddy M.S.( 2013). Formulation and In-vitro Evaluation of Gastro retentive In-situ Floating gels of Repaglinide Cubosomes /JPR:BioMedRx: An International Journal,1(8),787-797787-797