بررسی تاثیر نانوامولسیون اسانس ترخون بر بیان ژن های حدت اشرشیاکلی انتروهموراژیک

نویسندگان
1 دانشگاه تخصصی فن آوری های نوین آمل
2 گروه بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه تخصصی فن آوری‌های نوین آمل
3 دانشگاه تخصصی فن آوری‌های نوین آمل
چکیده
اشرشیاکلی O157:H7 انتروهموراژیک از مهمترین و شایع ترین پاتوژن­های غذایی در سراسر دنیاست که در حال کسب مقاومت در برابر برخی ترکیبات ضدمیکربی سنتزی رایج می­باشد. هدف از این پژوهش تعیین حداقل غلظت مهار کنندگی (MIC) و حداقل غلظت باکتری­کشی (MBC)نانو امولسیون اسانس ترخون (Artemisia dracunculus) برای سویه انتروهموراژیک اشرشیاکلی و سپس تاثیر غلظت­های تحت MIC آن بر نرخ رشد و بیان ژن­های حدت stx1) و (stx2 بود. نانوامولسیون اسانس ترخون به روش فراصوت تهیه و اندازه قطرات و پتانسیل زتای آن تعیین شد. MIC و MBC اسانس و نانوامولسیون با استفاده از روش میکرودایلوشن براث تعیین شد. میزان رشد و بیان ژن­های stx1A و stx2A در اشرشیاکلی پس از تیمار با غلظت­های مختلف تحت MIC بررسی شد. استراگول به عنوان اصلی­ ترین ماده تشکیل دهنده اسانس شناسایی شد. قطر ذرات نانوامولسیون به طور متوسط ​​50 نانومتر و پتانسیل زتا 30- میلی ولت بود. مقادیر MIC اسانس و نانوامولسیون، به ترتیب، 11/0± 58/0 و 07/0± 33/0میلی­گرم در میلی لیتر و MBC معادل، به ترتیب، 20/0± 65/0 و 15/0± 38/0میلی­گرم در میلی لیتر به دست آمد. نانوامولسیون نسبت به اسانس خالص دارای اثر مهارکنندگی بیشتری در برابر رشد باکتری بود. در پایان دوره 72 ساعته، تیمار با نانوامولسیون در غلظت 75 درصد MIC منجر به کاهش نسخه برداری از stx1A و stx2A به ترتیب برابر 75/3 و 10/4 برابر گردید در حالی که در غلظت 75 درصد MIC اسانس، میزان نسخه برداری از stx1 و stx2 در مقایسه با شاهد به ترتیب 91/1 و 02/2 برابر کاهش یافت. بیشتر بودن فعالیت مهارکنندگی نانوامولسیون اسانس ترخون در مقایسه با اسانس خالص در برابر رشد و تولید شیگاتوکسین اشرشیاکلی پتانسیل آن را برای کاربرد به عنوان نگهدارنده خوراکی طبیعی و نیز راه حلی جهت مشکل جهانی ظهور میکرب­های مقاوم به آنتی بیوتیک نشان می­دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluating the effect of Nanoemulsion of Artemisia dracunculus Essential Oil on Expression of virulence genes in enterohemorrhagic Escherichia coli

نویسندگان English

Maryam Azizkhani 1
Fahimeh Tooryan 1
P. shohreh 2
Razieh Partovi 2
MH Shahavi 3
1 Amol University of Special Modern Technologies
2 Amol University of Special modern Technologies
3 Amol University of Special modern Technologies
چکیده English

Escherichia coli O157:H7 is one of the most important and common foodborne pathogens in the world which is being resistant against some current synthetic antimicrobials. The aim of this study was to determine the minimum inhibitory concentration (MIC) and the minimum bacterial concentration (MBC) of Artemisia dracunculus (tarragon) essential oil and its nanoemulsion for enterohemorrhagic strain of Escherichia coli and then the effect of sub-MIC concentrations on growth rate and gene expression of virulence genes (stx1A and stx2A). Nanoemulsion of tarragon essential oil was prepared by the ultrasound method and the droplet size and zeta potential were determined. MIC and MBC of essential oil and nanoemulsion were determined using the broth microdilution method. The growth rate and expression of stx1A and stx2A genes in Escherichia coli were assessed after treatment with different concentrations of sub-MICs of essential oil and nanoemulsion. Estragol was identified as the main component in the essential oil. The average diameter of nanoemulsion particle was 50 nm and the zeta potential was -30mV. The MIC values ​​ of essential oil and nanoemulsion were 0.58±0.11 and 0.33±0.07mg/ml, respectively, and their MBC were 0.65 ± 0.20 and 0.38 ± 0.15 mg/ml, respectively. Nanoamulsion had a greater inhibitory effect against bacterial growth than free essential oil. At the end of the 72-hour period, nanoemulsion treatment at 75% MIC resulted in a reduction in stx1A and stx2A transcription of 3.75 and 4.10 folds, while at 75% MIC of essential oil stx1A and stx2A transcripts were reduced 1.91 and 2.02 folds compared with control, respectively. Higher activity of nanoemulsion of tarragon essential oil to reduce the growth and shigatoxin production of E. coli compared to pure EO, reveals its potential to be used as a natural food preservative and a solution to the global problem of emergence of antibiotic-resistant microbes.

کلیدواژه‌ها English

Enterohemorrhagic E.coli
Essential oil
Nanoemulsion
Shigatoxin
Tarragon
[1] Brusa, V., Lirón J.P., Aliverti, F., Aliverti, V., Brocardo, S., Leotta, G.A. 2011. Desarrollo y evaluación de dos PCR-RT para la detección de genes stx en carne picada, in: First International Congress of Zoonoses and Emerging Diseases and VII Zoonoses Argentine Congress, Abstract book (Buenos Aires: Asociación Argentina de Zoonosis.
[2] Simjee, S. 2007. Foodborne diseases. Humana Press. Totowa, New Jersey, USA.
[3] Karmali, M. A., Gannon, V., Sargeant, J. M. 2010. Verocytotoxin producing Escherichia coli (VTEC). Veterinary Microbiology, 140, 360–370. https://doi.org/10.1016/j.vetmic.2009.04.011
[4] Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223– 253. https://doi.org/10.1016/j.ijfoodmicro. 2004.03.022
[5] Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. https://doi.org/10.1016/j.fct.2007.09.106
[6] Norouzi, F., Hojjati, M., Jooyandeh, H., Barzgar, H.2018. Study of the possibility of application of tarragon essential oil in mayonnaise as a natural additive. Journal of Food Research, 28(3), 85–99.
[7] Mousavi Nadoshan, S., Owlia, P., Moein Najafabadi, L., Rasooli, I., Saderi, H., Salari, M. 2010. Effects of Sub-inhibitory Concentrations of Essential Oils of Mentha spicata and Cumminum cyminum on Virulence Factors of Pseudomonas aeruginosa. Journal of Medicinal Plants, 9(6), 124-130.
[8] Gutiérrez, J., González, C., Maestro, A., Sole, I., Pey, C., Nolla, J. 2008. Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid and Interface Science, 13, 245-251. https://doi.org/10.1016/j.jcis.2012.02.063
[9] Adams, M.R. 2007. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, IL: Allured publishing corporation.
[10] Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R.L., Darzi, G.N. 2016. Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalination and Water Treatment, 57(39), 18379-18390. https://doi.org/10.1080/19443994.2015.1092893
[11] Azizkhani, M., Misaghi, A., Basti, A.A., Gandomi, H., Hosseini, H. 2013. Effects of Zataria multiflora Boiss. essential oil on growth and gene expression of enterotoxins A, C and E in Staphylococcus aureus ATCC 29213. International journal of food microbiology, 163(2-3), 159-165. https://doi:10.1016/j.ijfoodmicro.2013.02.020.
[12] Mahmoudzadeh, M., Hosseini, H., Nasrollahzadeh, J., et al. 2016. Antibacterial activity of Carum copticum essential oil against Escherichia coli O157: H7 in meat: Stx genes expression. Current Microbiology, 73(2), 265-272. http://doi:10.1007/s00284-016-1048-2
[13] Carey, C.M., Kostrzynska, M., Thompson, S. 2009. Escherichia coli O157: H7 stress and virulence gene expression on Romaine lettuce using comparative real-time PCR. Journal of Microbiological Methods, 77(2), 235-242. https://doi:10.1016/j.mimet.2009.02.010 [14] Applied Biosystems, User bulletin no. 2. 1997. Relative quantification of gene expression.
[15] Aumeeruddy-Elalfi, Z., Gurib-Fakim, A., Fawzi Mahomoodally, M. 2016. Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. Journal of Herbal Medicine, 6(2), 88-95. http://dx.doi.org/10.1016/j.hermed. 2016.02.002
[16] Oussalah, M., Caillet, S., Saucier, L., Lacroix, M. 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18, 414-420. https://doi:10.1016/j.foodcont. 2005.11.009
[17] Sharafati Chaleshtori, R., Rokni, N., Razavilar, V., Kopaei, M.R. 2013. The evaluation of the antibacterial and antioxidant activity of Tarragon (Artemisia dracunculus L.) essential oil and its chemical composition. Jundishapur Journal of Microbiology, 6(9), 7877.
[18] Feizi, P., Azizkhani, M. 2019. Increasing oxidative stability of precooked trout fillet using herbal essential oils. Bulgarian Journal of Veterinary Medicine, https://doi:10.15547/bjvm.2212.
[19] Fraternale, D., Flamini, G., Ricci, D. 2015. Essential oil composition and antigermination activity of Artemisia dracunculus (Tarragon). Natural product communications, 10(8), 1469-1472.
[20] Karimi, A., Hadian,J., Farzaneh, M., Khadivi-Khub, A. 2015. Phenotypic diversity and volatile composition of Iranian Artemisia dracunculus. Industrial Crops and Products, 65, 315-323. Htps://doi: 10.1016/j.indcrop.2014.12.003
[21] Ciani, L., Ristori, S., Bonechi, C., Rossi, C., Martini, G. 2007. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied by electron spin resonance and Zeta potential. Biophysical chemistry, 131(1-3), 80-87. https://doi: 10.1016/j.bpc.2007.09.011
[22] Patil, S., Sandberg, A., Heckert, E., Self, W., Seal, S. 2007. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials,. 28(31), 4600-4607. https://doi:10.1016/j.biomaterials.2007.07.029
[23] Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R.L., Darzi, G.N. 2015. Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arabian Journal of Chemistry, 12(8): 3225-3230. https://doi:10.1016/j.arabjc.2015.08.024
[24] Dickinson, E. 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473-1482. https://doi:10.1016/j.foodhyd.2008.08.005
[25] Kutscher, H.L., Chao, P., Deshmukh, M., Sundara Rajan, S., Singh, Y., Hu, P., Joseph, L.B., Stein, S., Laskin, D.L., Sinko, P.J. 2010. Enhanced passive pulmonary targeting and retention of PEGylated rigid microparticles in rats. International Journal of Pharmaceutics, 402(1-2), 64-71. https://doi:10.1016/j.ijpharm.2010.09.020
[26] Kumar, R., Kaur, K., Uppal, S., Mehta, S.K.2017. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrasonics Sonochemistry, 37, 478-489. https://doi:10.1016/j.ultsonch.2017.02.004
[27] Donsì, F., Ferrari, G. 2016. Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology,. 233,106-120. https://doi:10.1016/j.jbiotec.2016.07.005
[28] Ma, Q., Davidson, P.M., Zhong, Q. (2016). Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80. International Journal of Food Microbiology, 226, 20–25. https://doi:10.1016/j.ijfoodmicro.2016.03.011
[29] Hamed, S.F., Sadek, Z., Edris, A. 2012. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. Journal of Oleo Science, 61, 641–648. https://doi:10.5650/jos.61.641
[30] Sugumar, S., Ghosh, V., Nirmala, M.J., Mukherjee, A., Chandrasekaran, N. 2014. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason Sonochem, 21, 1044–1049. https://doi: 10.1016/j.ultsonch. 2013.10.021.
[31] Ghosh, V., Mukherjee, A., Chandrasekaran, N. 2013. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem, 20, 338–344. https://doi:10.1016/j.ultsonch.2012.08.010
[32] Prateeksha, Barik SK, Singh BN. 2019. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Scientific Reports, 9(1), 6520. https://doi:10.1038/s41598-019-43016-w
[33] Dorman, H.J.D., Deans, S.G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308-316. https://doi:10.1046/j.1365-2672.2000.00969.x
[34] Auezova, L., Najjar, A., Kfoury, M., Fourmentin, S., Greige-Gerges, H. 2020. Antibacterial activity of free or encapsulated selected phenylpropanoids against Escherichia coli and Staphylococcus epidermidis. Applied Microbiology, 128(3), 710-720. https://doi: 10.1111/jam.14516.